Visualising Astronomy Data using VRML

Brett Beeson®, Michael Lancaster®, David G. Barnes®, Paul D. Bourke? and Guy Rixon®

®School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia;
bCentre for Astrophysics and Supercomputing, Swinburne University of Technology,
Hawthorn, VIC 3122, Australia;
‘Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA,
United Kingdom.

ABSTRACT

Visualisation is a powerful tool for understanding the large data sets typical of astronomical surveys and
can reveal unsuspected relationships and anomalous regions of parameter space which may be difficult to
find programatically. Visualisation is a classic information technology for optimising scientific return. We are
developing a number of generic on-line visualisation tools as a component of the Australian Virtual Observatory
project. The tools will be deployed within the framework of the International Virtual Observatory Alliance
(IVOA), and follow agreed-upon standards to make them accessible by other programs and people. We and
our IVOA partners plan to utilise new information technologies (such as grid computing and web services) to
advance the scientific return of existing and future instrumentation.

Here we present a new tool — VOlume — which visualises point data. Visualisation of astronomical data
normally requires the local installation of complex software, the downloading of potentially large datasets, and
very often time-consuming and tedious data format conversions. VOlume enables the astronomer to visualise
data using just a web browser and plug-in. This is achieved using IVOA standards which allow us to pass
data between Web Services, Java Servlet Technology and Common Gateway Interface programs. Data from a
catalogue server can be streamed in eXtensible Mark-up Language format to a servlet which produces Virtual
Reality Modeling Language output. The user selects elements of the catalogue to map to geometry and then
visualises the result in a browser plug-in such as Cortona or FreeWRL.

Other than requiring an input V0Table format file, VOlume is very general. While its major use will
likely be to display and explore astronomical source catalogues, it can easily render other important parameter
fields such as the sky and redshift coverage of proposed surveys or the sampling of the visibility plane by a
rotation-synthesis interferometer.

Keywords: virtual observatory, visualisation, astronomy, data mining

1. INTRODUCTION

Visualisation is a primary knowledge discovery tool in astronomy. Examples range from ubiquitous two-
dimensional scatter plots, such as those that reveal the Tully-Fisher relation' and constitute the Hertzsprung-
Russell diagram, to volumetric renderings of the Virgo data® which reveal filaments, sheets and voids in cosmo-
logical simulations. As well as guiding standard data analysis, visualisation can reveal unsuspected relationships
and anomalous regions of parameter space which are difficult to determine programmatically and describe ana-
lytically. Visualisation can also be helpful in identifying faults in data, caused by such problems as acquisition
errors or simulation artefacts.

Astronomy data can be broadly categorised as gridded data, sparse point-like data, or a combination of
both. Examples in the first category include the raster data which make up scanned or direct images of the
sky, and the volumetric data which constitute the output of several popular magnetohydrodynamic codes (e.g.

Further author information: all correspondence to D.G.B., E-mail: barnesd@Qunimelb.edu.au, Telephone: 61 3 8344
5428

ZEUS-2D?). Sparse data sets include source catalogues of all kinds, broadband spectral energy distributions
and the output of N-body simulations (e.g. Hydra*) to name a few. Many other data sets have the property
that some of their axes are gridded, while others are sparsely sampled. For example, complex sky visibilities
measured with a radio interferometer having a multi-channel spectrometer (correlator) lie in a space whose
photon frequency axis is smoothly gridded, whose time and visibility azes are sparsely sampled, and whose
polarisation azis is discretely sampled.

A new paradigm for visualising astronomy data is emerging in the form of the Virtual Observatory (VO). A
common aim of VO projects worldwide is to unify astronomical data description and on-line publication proto-
cols so that users can find and access all manner of data using a very small set of software tools. Interoperability
standards are being developed by the International Virtual Observatory Alliance (IVOA) partners, and of the
earliest standards are the V0Table— an eXtensible Mark-up Language (XML) format for encapsulating tabular
astronomy data — and conesearch— a protocol for obtaining astronomical source catalogue extracts primarily
based on sky position.

We have previously described our efforts to provide a new perspective on larger-than-memory, multi-
dimensional, lattice-based (ie. gridded) datasets.> Originally developed with no awareness of the VO paradigm,
our distributed-data volume rendering implementation found an interesting role as a demonstrator of remote
visualisation capabilities in the context of the VO and the Grid.® Motivated by this success, we decided to
turn our attention to sparse, point-like data — such as that returned in a VOTable by a conesearch request —
and how it might be displayed and explored in the VO context.

In this paper, we present a new visualisation tool for virtual observatories — VOIlume. In Sect. 2, we describe
the context of the tool and define the requirements it is based on. In Sect. 3 we outline the design of VOlume,
the implied technology choices and brief implementation details. Some examples are given in Sect. 4. Rendering
performance characteristics are examined in Sect. 5, and we conclude with some remarks on possible extensions
to VOlume in Sect. 6.

2. VISUALISATION OF VIRTUAL OBSERVATORY DATA
2.1. The VO visualisation paradigm

The main plotting tools available for visualisation of data in VOTable format are VOPlot*, TopCat' and Mirage.”
The first two are products of the astronomical community, and provide simple two-dimensional (2D) plotting
capabilities and limited statistical operations. Mirage is a more general data exploration tool for scientific data,
providing linked 2D plots of tabular data and some reasonably sophisticated statistical analysis procedures.
None of these tools produce publication-quality output and they all struggle with even moderate-sized tables.
Instead, they satisfy quick look and interactive visualisation requirements.

The quick look approach enables the user to immediately examine data without explicitly downloading and
converting it to a format suitable for a legacy plotting package. For example, prior to requesting a large extract
of a catalogue, the user may request a smaller extract (e.g. a bright sub-sample of the large extract) and make
a plot to verify the sky coverage of the sample. Similarly, in the exploratory phase of a new science project,
an astronomer may want to visually verify the overlap in sky and redshift coverage of two or more catalogues
made at different wavelengths.

Quick look tools must be convenient. In the VO context this basically means they must support the standard
data interchange formats (ie. VOTable), they must be able to transparently retrieve remote data files via the
standard transport protocols (HTTP now; GSIFTP and others in the future), and they must be integrated with
the VO environment in which the user finds and requests data (ie. operable from a web browser).

Motivated by the data-mining aspects of the VO, the new visualisation tools are also expressing more
interactive features. TopCat enables the user to propagate a selection from one 2D plot (or from a spreadsheet-
style view of the source data) to another 2D plot, allowing rudimentary by-eye cluster analysis for example.

*http://vo.iucaa.ernet.in/"voi/voplot.htm
*http://www.star.bris.ac.uk/ mbt/topcat

Mirage takes this further and supports highlighting of a data selection in many 2D plots. It is interesting that
capabilities like this have rarely been exposed to users even in the largest legacy astronomy data reduction
packages.

2.2. From two-dimensional to three-dimensional visualisation

The ubiquity of 2D plots (whether scatter diagrams or images) as visualisation tools in science is probably due
to three reasons:

e the publishing medium (paper) is a (static) 2D format,
e the display device (monitor) is a 2D format, and

e the computational demands — in terms of both programmer skill, and processing power to provide
interactivity — are small compared with three-dimensional (3D) plots.

It is widely acknowledged that the computational capabilities of desktop workstations have essentially followed
Moore’s Law (Electronics, April 1965), doubling every 18 months. Less obviously, and certainly less exploited
in the scientific domain, the three-dimensional graphics capabilities of workstations have grown even faster,
driven primarily by the entertainment industry. The combined growth in computational and graphical power
means that today’s typical workstation can easily compute and render three-dimensional environments at a
rate of order 30 million triangles per second. At these rates, virtual movement through a 3D space can provide
a genuine spatial comprehension of a dataset, even on a 2D display device.

2.3. VOlume

The archetypal use case which motivates our development of VOlume is that a user has located and/or generated
a V0Table which they wish to explore visually. The VOTable is available via a generic data stream, allowing
the input to come from an application, a file or a network socket. The streamed V0Table is parsed by VOlume
and the user is presented with a simple interface to choose which columns of the table to visualise, and how to
map values in the table to geometry and colour. Sensible default values should be provided, such as mapping
right ascension to # and declination to ¢ if a spherical coordinate system is chosen.

Once the user is satisfied with these mappings a visual representation is produced by VOlume. Each row in
the input VOTable corresponds to a discrete point in the visualisation which has been scaled, coloured, textured
or oriented to convey more information such as integrated flux or apparent diameter. The user should be able
to interactively rotate the visualisation to see obscured features and to get a sense of the structure. The user
should also be able to zoom to inspect more distant or finer-scale structure, and to move into and through the
data volume. To aid navigation, visual decorations might be added such as coordinate axes and planes.

3. DESIGN AND IMPLEMENTATION
3.1. Browser and plug-in paradigm

We envisage our system being used primarily as a quick sanity check or for rapid inspection of data. It is
unreasonable to require the user to download, compile and install software locally. Therefore our primary
design requirement is that the user should be able to use any reasonably modern web browser, equipped with
an appropiate third-party plug-in (which is installed once), to visualise their data. The speed of the server-side
processing of V0Tables and the graphics performance of their workstation must be adequate to transform and
view medium-sized V0Tables of say 10,000 sources. High performance is not required since in practice network
bandwidth will limit the practical transferrable VOTable size. A suitable web browser plug-in ought to be
available for Microsoft Windows, Apple Macintosh OS X, Linux and perhaps Sun Solaris.

We chose to use Virtual Reality Modelling Language (VRML) to describe the visual model of a VOTable. VRML
is widely used and supported, and nearly all common hardware and software platforms have freely available
web-browser plugins of varying standards. As well as defining a syntax for describing 3D environments, VRML

defines a standard method of moving within and controlling the view of the virtual environment. By choosing
an existing standard with wide support we can focus on the production of content rather the rendering and
manipulation of the content. The main alternative would be to write and supply custom visualisation code,
which the user would have to download, possibly compile, and install. While this would undoubtedly produce
superior results in most respects (flexibility, transformation and rendering speed, etc.), it would be a substantial
additional effort over and above the VRML approach in terms of developing and supporting a multi-platform
3D content viewer and scene description language. Although we have not pursued this route, we give some
indication of the possible performance gains in Sect. 5.

3.2. Web-application and Java Servlet paradigm

We provide the conversion from V0Table to VRML using a web-application. This satisfies the requirement that
the user need never explicitly download a remote VO0Table to their local system. The VOTable is specified via a
URL, which allows any resource accessible via URL, including other web-applications, to act as V0Table
sources. This model makes it possible to allow a VOTable to be supplied via an HTTP POST request (see Sect. 6).
The URL may be specified via a parameter in the web-application address, as well as within the user interface,
e.g.http://services.aus-vo.org/volume?SourceXMLURL=http://any.address.org/votable.xml This fol-
lows the model of VO protocols such as conesearch and Simple Image Access Protocol. and allows VOlume
to interoperate with other VO-compliant web-applications, such as SkyCat.

Our choice of Java Servlet Technology (hereafter “servlets”) restricts our user-interface to HyperText Mark-
up Language (HTML) forms. We choose not to use applets since users often experience problems enabling Java in
their browsers. A wizard-style interface guides the user through the selections of columns, geometry mappings,
etc.. A wizard is a very good solution to the common problem of complex user interfaces in HTML. Often the
user interface depends on previous user input. For example, if a user selects spherical coordinates then r, 6, ¢
mappings must be displayed, but for cartesian co-ordinates, ,y, z mappings are needed. Standard HTML cannot
change dynamically to directly accommodate this. Wizards present manageable portions of the interface to the
user, one step at a time. After each step the input can be validated and verified, and the next set of options
presented to the user. We can create flexible, dynamic interfaces in HTML using this method.

3.3. Transformation paradigm

To transform VOTable to VRML we initially looked at Extensible Stylesheet Language Transformations (XSLT).
Using XLST seemed to promise less coding and faster development. The stylesheet we produced could easily
have been used by other VO services and applications in different projects. However we need to transform
not just the style of the document, but also its content. This entails amongst other things handling geometric
coordinate conversion, and XSLT’s very basic arithmetic functions quickly make this solution unworkable.
Instead we coded our own transformer. Even here, though, a number of tools are available to help speed
development. There are several V0Table parsers, as well as numerous generic XML parsers.

3.4. Streaming paradigm

The parsing and transformation of the V0Table is done on a data-stream, in preference to loading the table into
memory. Despite this approach introducing some technical difficulties, it allows the server to process extremely
large datasets simultaneously, providing a much more scalable solution than the in-memory paradigm. V0Tables
having sizes of order 100 MB can be feasibly processed in this manner. The performance of a web-server would
degrade seriously trying to parse just one, let alone several, such tables in memory.

Although parsing streaming content provides a much more scalable solution, it creates problems because
the parsing code cannot anticipate potential issues downstream. If, for instance, there is a syntax error in the
VOTable, (e.g. the XML is not well formed), a streaming parser can only interrupt and write an error to the
output stream. It is very difficult to generate sane VRML if this occurs. Another issue lies in the design of the
VRML generating code. It is much harder to generate sensible VRML if the input must be parsed in sequential
order. We built a custom streaming VRML java class library to do this, as we could not find a suitable pre-existing

‘http://services.aus-vo. org/skycat

product. This library enables the programmer to easily generate sane VRML without having to worry too much
about the VRML syntax.

The two other issues that we faced due to the need to stream the content were finding a suitable streaming
V0Table parser, and the need to read the data stream multiple times. The streaming V0Table parser that we
originally looked at was SAVOT. However, at the time, SAVOT operated by extracting an entire TABLE element,
from the stream at a time and since a single element may be very large, SAVOT was not a satisfactory solution.
Consequently, we built our own rudimentary VOTable streaming parser for VOlume, based on the kXm# parser.
We note that the latest version of SAVOT (2.1) now supports row-by-row parsing, and indeed and so does the
STILY parser. A future version of VOIlume could be modified and simplified to use one of these third-party,
event-based parsers.

There are a number of reasons why we do multiple passes of the data stream. We do a first pass to get the
table meta-data and a row count, used in presenting options to the user. Actually this is done in two passes
due to a subtle design issue, but could be changed to a single pass. The data stream is then parsed again to
apply the selected transformation. If the user chooses to display the data as points, we need to parse the data
a third time in order to extract the colour information. This is due to the way sets of points are described in
VRML. Again, the colour information could be extracted in a single pass, but the resulting VRML would be more
complex.

3.5. Language paradigm and implementation issues

Java is the language of choice for the VOIlume application. It is ideally suited to network applications where
performance is not critical (the reader is reminded that VOlume is only charged with transforming V0Table
streams to VRML streams, and rendering performance is relegated to the browser and plug-in combination chosen
by the end-user). Java provides excellent XML support and supports rapid development. Our web application
needs to be stateful — that is, it needs to remember the user’s previous inputs — and therefore session (or cookie)
support is needed. Java servlets are a good choice since they provide all these features, as well as SOAP support
if we want to create a web service (see Sect. 6). Finally, Apache Tomcat!l provides a free, robust and well-tested
web application (servlet) container.

The implementation is relatively straightforward and consists of a Java package to read a V0Table stream
and write a VRML stream. Around this is a Java 2 Platform, Enterprise Edition (J2EE) HTTP servlet to provide
the user interface and HTTP response streaming. Construction of the user interface was just as time-consuming
as the conversion of VOTable to VRML. In subsequent development, we would use one of the web-application
frameworks (such as Struts, or plain Java Servlet Page [JSP] tag libraries) to streamline the user interface
development.

The main issue during implementation was the use of streams rather than in-memory manipulation of data.
This will arise more and more in VO applications as they move from prototypes to production versions which
need to handle very large datasets. Error handling is tricky in this paradigm: if we encounter an error halfway
through outputting VRML we must ignore it and continue. We cannot return to an HTML page since the response
type has already been set to VRML and part of the document has been sent. It may be possible to describe
the error via text in the VRML virtual world. This would increase the code complexity and is not reliable since
at least one popular VRML plugin doesn’t display text! An inelegant and inefficient alternative would be to to
transform and produce output twice: once to validate the transformation, and once to stream the validation to
the consumer.

4. EXAMPLES

In this Section, we provide some simple examples of how VOlume can be used to explore data. In the first
example, we also include a workflow diagram and figures depicting the user interface used to control the

Shttp://www.kxml.org
Ihttp://www.star.bristol.ac.uk/ mbt/stil
Ihttp://jakarta.apache.org/tomcat

transformation from VOTable to VRML format. By far the best way to become familiar with VOlume and
what it can do is to use it! Readers are encouraged to install a VRML plug-in viewer for the browser, visit
http://services.aus-vo.org/volume, and transform and view one of the provided V0Tables or one of their
own.

4.1. The HIPASS High Velocity Clouds

First, we show a worked example of setting up the VOlume transformation parameters and the resultant
visualisation. For this example, we use a V0Table containing the entire High Velocity Cloud catalogue (Putman
et al., 2002) generated by the Aus-VO SkyCat service. Figure la shows the web form presented to the user,
once they have provided their VOTable; in this case, the VOTable was provided to VOIlume by SkyCat. A brief
summary of the columns of the VOTable is given and the user can select the geometry of the transformation
(rectangular [default], spherical or cylindrical), the type of object to display (points [default], boxes, spheres or
tetrahedra), and whether to show geometric decorations.

Figure 1b shows an excerpt of the next form presented to the user. Here, their existing choices are sum-
marised, and they can now select which columns (fields) in the VOTable should be mapped to the three coor-
dinate system axes (in this case r, 8, and ¢), and which column is to be used to colour the objects. In this
example, the user has chosen to map the fields V_LSR to r, RA to €, DE to ¢, and FLUX to colour.

The final mapping parameters the user can modify are shown in Fig. 1c. Again, their existing choices are
summarised, and their task is now to select input and output ranges for the (linear) transformation mappings,
and choose an appropriate colourmap. The ranges are initially populated to show the full range of the data, but
the user can modify these to select a subset of the data, or pin the end-points of the transformation mappings.
In this case, the user has set the output radius range to [1.0, 1.0], which will result in all points being mapped to
the surface of the unit sphere, yielding a sky view type visualisation. VRML views of the resulting environment
are shown in Fig. 2.

4.2. The 2dF Galaxy Redshift Survey

One of the main uses of VOlume will likely be to explore structure in redshift catalogues. Figures 3 and 4
show VOlume representations of a brightness-limited sub-sample of the 2dF Galaxy Redshift Survey 100k data
release.® In these figures, the wedge-shaped nature of the survey is clearly visible, but so too is structure within
the wedges of the survey. This example was simply constructed by obtaining the sub-sample in a V0Table from
the CDS Vizier service, storing it temporarily on a web server, and giving the URL of the V0Table to the
top-level VOlume servlet page.

5. TRANSFORMATION AND RENDERING PERFORMANCE
5.1. Conversion and bandwidth considerations

The time taken for VOlume to convert an arbitrary V0Table to VRML format is generally very small, and is
ordinarily dominated by the network bandwidth between the VOlume service and the source V0Table and
between the VOlume service and the client workstation. In the absence of a bandwidth bottleneck (ie. for
local conversion), the parsing speed is an entirely respectable ~ 10* rows per second. Input network bandwidth
problems can be alleviated to a large extent by preparing the source V0Table with only the fields (columns)
that are going to be mapped to elements of the geometry. Output bandwidth needs are generally lower because
VRML files are typically smaller than the input VOTable and can be efficiently compressed at the service end
and automatically uncompressed by most well-configured browsers. VRML viewers themselves readily accept
compressed VRML even if the host browser fails to decompress the incoming stream.

VOlume v0.5

|| VOTable Source: || hitp:/fservices. aus-vo.ong: 808Diskycal/ D1GCIBEIBAIA1 T 203064 3DFESE 72560 Xl ||

Name uco Min Max Units.
RA POS_EQ_RA_MAIN 02 35095 || degrees
DE POS_EQ DEC MAIN 89117 || 275 degrees
V_LSR VELOC _LSR -353.0 5020 kms-1
SEMI_MAJ || EXTENSION FwHM Mal || oo 24.4 degrees . : e
5
T_PEAK SPECT_LINE_TEMP 0.0 83.59 K VRML Display Objects: Spheres
N_HI PHYS_COLUMN_DENSITY || 0.0 538 1020 em?2
— — — Show geometric decorations: || Show
FLLX PHOT_FLUX 0.0 5000071 || JY kms-1

WRML param VOTable Fleld
Select Radius (red) Source: VISR
Choose Geometry: Spherical 3] Select Theta (green) Source: RA [
VRML Display Objects: Spheres |4 Select Phi (blue) Source: DE [
Show geometric decorations: || Select Colour Source: FLUX [
{_Prev) Next) {_Prev)[Next)
a. b.
VRML param WOTable Field
Radius {red) Source: || V_LSR
Theta {green) Source: || RA
| Phi {biue) Source: ” DE |
| Colour Source: ” FLLX |
Input Range (Data) Output Range (Geometry)
From To From To Drop Outliers
Radius red) || [-253.0 502.0 kms-1 1.0 1.0 metres =]
Theta {green) || 0.2 350.95 degress 0.2 359.95 degress =
Phi (blue) -B2.117 2.75 degress -89.117 2.75 degress =]

{ Prev ,If Transform)If Transform to file)I: Reset Form)

Figure 1. Transformation servlet forms: a. — selecting geometry, object type and decorations; b. — setting column
mappings; c. — selecting linear transformation ranges, clipping and colourmap.

Figure 2. VRML view of the HIPASS High Velocity Clouds: a. — external view showing entire southern HVC population,
and Cortona user interface; b. — internal view towards the south celestial pole.

5.2. Rendering speed

The conversion from V0Table format to VRML is fast in all but the most pathological cases, and in any case, is
done at most a few times per session. and so the usefulness of VOlume as an exploratory tool depends almost
entirely on the rendering of the constructed environment being accomplished at interactive speeds. This in turn
relies wholly on the third-party VRML viewers that are available to render VOlume-created environments. It
is therefore pertinent to briefly assess the performance characteristics of VRML browsers compared to a native,
C-based OpenGL** renderer.

For our tests, we selected the brightest catalogue entries in the 2dF Galaxy Redshift Survey data.® Using
VOlume we generated VRML files with right ascension mapped to spherical coordinate 6, declination mapped
to ¢ and zp mapped to r. We created two files, one — points — with 9600 sources each represented by a
point object coloured by to By magnitude, and another — spheres — with 1000 sources each represented by a
sphere, also coloured by magnitude. We displayed the generated VRML files using the Open Source VRML renderer,
FreeWRL', and measured the rendering frame rate. We would have preferred to use the Cortona** renderer for
its refined interface but we could not measure frame rates in any sensible way with Cortona. For comparison
with a fast, native renderer, we also transformed the sample into suitable input for the Stereo2 program,
using the same coordinate and colour mappings. Stereo2 is a highly-optimised, C-based virtual environment
renderer which can render points and spheres using native OpenGL calls. Frame rates were measured on an
Apple PowerBook with hardware OpenGL acceleration, at a screen size of 1024 x 768 pixels, and are shown in
Table 1. We went to some length to ensure that spheres were rendered with the same number of polygons in
FreeWRL and Stereo?2.

Both FreeWRL and Stereo2 offer excellent frame rates for environments containing points and lower frame
rates for (smaller) populations of spheres. For interactive work, frame rates of ~ 10 fps or more are desirable.
The advantage of the native OpenGL implementation is clear, giving frame rates better by a factor of at

**http://www.opengl.org
Hhttp://freewrl.sourceforge.net
Hhttp://www. parallelgraphics.com/products/cortona

Figure 3. VRML view of the 2dF data release: external view of spherical projection, with tetrahedra coloured by redshift.

Table 1. Rendering speeds (in frames per second [fps]) of FreeWRL and Stereo2 for points and spheres geometries.

(fps) | 9600 points | 1000 spheres
FreeWRL 27T+ 2 1.7+0.3
Stereo?2 > 100 15+1

least ~ 4 for point geometry, and nearly 10 for spheres. This is somewhat surprising, because in our tests,
FreeWRL was used in “stand-alone” mode (i.e.,, not as a browser plug-in), and there ought not to be such
a large difference: both Free WRL and Stereo2 are using direct hardware OpenGL acceleration, and once the
scene is parsed and stored in an OpenGL display list, performance should be very similar. We are tempted to
conclude that FreeWRL is either not using OpenGL display lists at all, or using them inefficiently. Subjective
tests comparing Cortona to FreeWRL gave the impression that Cortona had a clear edge over FreeWRL for
spheres, but still performed well below the level of Stereo2.

A point should be made regarding spheres and how they are drawn. All OpenGL geometry must eventually
be drawn as a set of quadrilaterals or triangles. Spheres can be tesselated or tiled in many ways, and at different
resolutions (scales). The VRML viewers we have used seem to provide no way to control (or even know!) the
tesselation level, whereas Stereo2 provides this option and it can be used to very good effect. However, even

4 B

Figure 4. VRML view of the 2dF data release: view from inside a spherical projection, with tetrahedra coloured by
redshift. Tetrahedra are rendered faster than spheres, yet still provide distance cues via obscuration and scaled size.

Stereo2 lacks some relatively simple but probably highly effective optimisations, such as creating one sphere at
the desired resolution, storing it in a display list, and then translating and scaling it into place for each instance.

The catch is that spheres, or at least solid objects, are far more useful than simple points in interactive 3D
work. Solid objects that have volume are drawn smaller when further away, and nearby objects obscure distant
objects. In lieu of control over the level of tesselation of spheres by the various VRML viewers, we elected to
provide the coarsest-possible control in VOlume: the user can choose to use tetrahedra instead of spheres. This
yields solid objects with only four facets, and produces effective and more rapidly rendered VRML environments
(see Fig. 4).

Aside from sphere tesselation, and for that matter, any differences in geometry sent to the OpenGL hard-
ware, the VRML viewers have additional features above and beyond Stereo2 which may also be slowing their
performance. For example, whether or not a VRML viewer is running stand-alone or as a plug-in, its event loop
may be quite different to that in Stereo2. It may have to calculate and correct for collisions between the virtual
camera and objects in the 3D environment, or it may need to relinquish control to the user interface and/or the
host browser for some appreciable fraction of time. It may also be the case that VRML players must use some
non-optimal OpenGL in order to support older hardware, something that Stereo2 does not do.

6. EXTENSIONS

There are several possible extensions to VOlume which would increase its utility, performance and flexibility.
We highlight a few of them here.

Simple extensions. VOlume does not yet ascribe any attribute to the elements of the VRML world other
than colour. This could easily be extended so that additional columns in the input data stream could be
mapped to size, orientation or even dilation along an axis, thereby preserving more of the information in the
input V0Table. Text could also be used to label key objects or regions in the VRML, or to provide simple axis
labels and scale information. Indeed, a colour cylinder could be embedded in the scene to convey the colour
mapping information. VRML also provides for pre-defined viewpoints, animation of elements of the scene, and the
incorporation of Java-based components. Support for these latter extensions is often incomplete or unreliable
in VRML viewers though, so we have not explored them at this stage.

X3D. We currently use VRMLI7 which is a text file format. A new VRML format, called X3D, is currently a
draft standard and already has prototype browsers. X3D will provide XML and binary formats in addition to
the current text format. The XML format opens the possibility of using existing XML tools to write the scene,
instead of using custom code, and the ability to validate the output against the X3D schema as it is written.

Optimisations. Our performance tests show that sphere elements are slow to render compared to points. We
plan on exploring the 3D gaming technique of billboarding to reduce the polygon count while still providing a
volumetric effect to each point. A texture is applied to a billboard (a single polygon) which is rotated to always
face the viewer, giving the impression of a 3D object. Billboards have the advantage of (optionally) obscuring
more distant billboards (textures can be made transparent so this does not happen), as well as being scaled
according to distance from the camera. Textures representing flat and specularly shaded spheres are simple to
generate, and can be given arbitrary colours at render time. Another approach to improving sphere rendering
speed would be to tesselate the spheres within the VOlume code and write the resultant polygons to the VRML
stream; a tesselation (scale) control could be provided in the user interface so the user could choose how finely
the spheres are rendered.

Web services. Instead of a servlet, a web service could use VOlume code to provide other programs with the
ability to produce VRML visualisations. There are a number of transformation parameters which are presently
set interactively via the user interface. The web service would receive an XML document describing the geometry
mappings and return an X3D XML document. Using a web service we could, for example, send any fixed-width
text catalogue to a service which converts it to a V0Table then streams it directly to VOlume for conversion to
VRML. The user would never see the VOTable nor VRML, but rather just their text file displayed visually.

Stereoscopic display. The perception of 3D environments on flat 2D screens can be improved dramatically
by using stereoscopic display techniques. On single monitors, stereoscopy is frequently implemented in a frame-
sequential mode — subsequent vertical refreshes of the monitor render the scene for the left eye, then the right
eye, then the left again, and so on. Synchronised LCD shutter glasses alternately block the view of each eye,
leading to a stereoscopic perception of the scene. For projection, passive stereoscopy is feasible using dual
projectors and oppositely polarised filters over the projector lenses and the viewers’ eyes. There are essentially
no useable and free stereoscopic VRML viewers available now. However, it shouldn’t be a particularly difficult
project to create a stereoscopic version of Free WRL. We leave this as an exercise for the reader.

ACKNOWLEDGMENTS

Part of this work was supported by an Australian Research Council Linkage Infrastructure (Equipment and
Facilities) grant.

REFERENCES

. R. B. Tully and J. R. Fisher, “A new method of determining distances to galaxies,” Astron. & Astroph. 54,
pp. 661-673, 1977.

. A. Jenkins, C. S. Frenk, F. R. Pearce, et al., “Evolution of structure in cold dark matter universes,” Astroph.
J. 499, pp. 2040, 1998.

. J. M. Stone and M. L. Norman, “Zeus-2d: A radiation magnetohydrodynamics code for astrophysical flows
in two space dimensions. i - the hydrodynamic algorithms and tests,” Astroph. J. Supp. 80, pp. 753-790,
1992.

. H. M. P. Couchman, P. A. Thomas, and F. R. Pearce, “Hydra: an adaptive-mesh implementation of p
3m-sph,” Astroph. J. 452, pp. 797-813, 1995.

. B. Beeson, D. G. Barnes, and P. D. Bourke, “A distributed-data implementation of the perspective shear-
warp volume rendering algorithm for visualisation of large astronomical cubes,” Publ. Astron. Soc. Aust.
20, pp. 300-313, 2003.

. G. Rixon, D. G. Barnes, B. Beeson, J. Yu, and P. Ortiz, “Visualizing data cubes on the grid,” in Astronomical
Data Analysis Software and Systems XIII, F. Ochsenbein, M. G. Allen, and D. Egret, eds., Astron. Soc.
Pacific Conf. Series.

. T. K. Ho, “Mirage: A tool for interactive pattern recognition from multimedia data,” in Astronomical Data
Analysis Software and Systems XII, H. E. Payne, R. I. Jedrzejewski, and R. N. Hook, eds., Astron. Soc.
Pacific Conf. Series 295, pp. 339-342, 2003.

. M. Colless, G. Dalton, S. Maddox, et al., “The 2df galaxy redshift survey: spectra and redshifts,” Mon.
Not. Royal Astron. Soc. 328, pp. 1039-1063, 2001.

