
POVRAY: a tool
for scientific
visualisation

Paul Bourke
WASP, UWA

Introduction

• POVRay is a raytracer. For each position (pixels) in the
image plane rays are traced from a virtual camera into a
scene. The scene is described by geometry, materials,
lighting, atmospherics. The result is an image representing
what the virtual camera would “see”.

• Well suited to many visualisation problems where
precise/subtle visual cues or high quality imagery is
required.

• Large user community. Currently undergoing significant
development.

Strengths

• Very powerful scene description language!
Human readable.

• High level primitives, not limited to polygonal mesh
approximations. (sphere != thousands of triangles)

• Able to handle large data volumes.

• High quality rendering can be achieved.

• Available as source code, modification possible.

• Cross platform: Mac OS-X, MSWindows, Linux

• Integrates well with UNIX scripting options.

• Reasonably good documentation and third party online
support.

Limitations

• Lack of a good cross platform graphical front end.
Important for animators, less important for scientific/data
visualisation.

• Not interactive (yet), edit-render-view cycle.

• Limited built-in support for multiple CPUs, no support
(yet) for clusters or multiple processors. There are ways of
rendering single images or animations in parallel.

• Poor/limited IO handling capabilities => need to write
programs that convert data to geometry.

Typical (one possible) Work Flow

• Create a POVRay scene description file, just a text file
eg: myscene.pov

• Create a settings file, also a text file with rendering options
eg: myscene.ini

• Render it using the POVRay engine run from the
command line (assuming UNIX operating system)
eg: povray +imyscene.pov myscene.ini

• View the result in an image viewer
eg: GIMP, PhotoShop, XV

Geometric Primitives

• Solids: sphere, cone (cylinder), box, prism, surface of
revolution (lathe), superellipse, torus, text, and others.

• Solids: blob, sphere sweep, CSG constructions of solids.

• Surfaces: disc, patch, mesh (mesh2), polygon, triangle,
plane (infinite), and others.

• Surfaces: isosurface, parametric surface, height field
(actually a solid)

Surface Properties: Textures

• pigment: colour/transparency of the surface.

• normal: vector perpendicular to a point on the surface, can
be used for bump maps.

• finish: ambient, diffuse, specular reflection coefficients.

• variation across surface supported by maps, patterns, and
images.

Camera Model

• Position, view direction, up vector, aperture, aspect ratio

• Left or right handed

• Perspective, orthographic, fisheye, panoramic, spherical, ...
and others

Lighting Model

• Ambient light.

• Types: point lights, spot lights, area lights, and others.

• Shadowless lights.

• Light fading with distance.

• Atmospheric, media, fog effects.

• Radiosity.

CSG: Constructive Solid Geometry

• See csg.pov

• Operations: union, intersection, difference, merge.

• Can only be applied to “solid” objects.

difference {
 sphere {
 <0,0,0>, 0.5
 }
 sphere {
 <0.2,0.3,0>, 0.35
 }
}

union {
 sphere {
 <0,0,0>, 0.5
 }
 sphere {
 <0.2,0.3,0>, 0.35
 }
}

intersection {
 sphere {
 <0,0,0>, 0.5
 }
 sphere {
 <0.2,0.3,0>, 0.35
 }
}

Example: Transformations

• See transform.pov

• scale, need not the same across all axes.

• rotate (in degrees)

• mirror eg: translate <-1,1,1> for mirror in yz plane

• translate union {
 cylinder {
 <-1,0,0>, <1,0,0>, 0.1
 scale <0.5,1,1>
 }
 cone {
 <0,0,0>, 0.2, <0.5,0,0> 0
 translate <0.5,0,0>
 }
 sphere {
 <0,0,0>, 1
 scale 0.15
 translate <-0.5,0,0>
 }
 rotate <0,0,70>
}

Example: arrow glyph

Example: calabi-yau surface

• See calabiyau.c and calabiyau.pov

• triangles generated in external C program, #include the
result into a scene file.

• More efficient to use a mesh structure.

triangle {
 <1.18948,0.32963,0.980681>,
 <1.17523,0.3227,0.960063>,
 <1.17508,0.339471,0.954446>
 texture {
 pigment { color rgbt <0,0,1,TRANSPARENCY> }
 finish { thefinish }
 normal { thenormal }
 }
}

union {
 #include "calabiyau.inc"
}

One triangle from many in calabiyau.inc

Media: Example

• See media.pov and vol.df3

• Media is described in a rectangular volume in the .df3
format. Emissive, scattering, absorption model.

• Form of direct volume rendering.
#declare theinterior = interior {
 media {
 emission <1,1,1> / 10
 absorption <1,1,1> / 30
 scattering { 1, <0,0,0> }
 density {
 density_file df3 "vol.df3"
 color_map {
 [0.0 rgb <0,0,0>]
 [0.2 rgb <0,0,0>]
 [0.4 rgb <0,0,1>]
 [0.6 rgb <0,1,0>]
 [1.0 rgb <1,0,0>]
 }
 }
 }
}

box {
 <0,0,0>, <1,1,1>
 pigment { rgbf 1 }
 interior { theinterior }
 hollow
}

No Points or Lines!

• See rings.pov and rings.inc

• In general a raytracer cannot trace idealised points or
lines, they are infinitely thin so a ray never strikes them.

• Solution: cylinders, cones, and spheres (or sphere sweep).

sphere {
 <5.4,0.06,0.08>,
 ringradius
}
cylinder {
 <5.4,0,0>,
 <5.4,0.06,0.08>,
 ringradius
}
sphere {
 <5.4,0,0>,
 ringradius
}

Surfaces: parametric/isosurface

• See isosurface.pov and parametric.pov

• Only functions not volumetric (voxel) data.

parametric {
 function { cos(2*pi*u - pi/2)*cos(2*pi*(-u+v)+pi/2) }
 function { cos(2*pi*v - pi/2)*cos(2*pi*(-u+v)+pi/2) }
 function { cos(2*pi*v - pi/2)*cos(2*pi*u-pi/2) }
 <0,0>, <0.5,1>
 contained_by { sphere { <0,0,0>, 2.5 } }
 accuracy 0.001
 max_gradient 10
 texture { T_Brass_5C }
 scale 0.9
}

isosurface {
 function {
 (pow(x,2)+3) * (pow(y,2)+3) * (pow(z,2)+3) - 32*(x*y*z+1)
 }
 contained_by {
 sphere { <0,0,0>, 2.5}
 }
 threshold 0.25
 accuracy 0.01
 max_gradient 100
 open
 scale 0.8
}

Height Field

• See terrain.pov and mars.png

• Surface height represented by image pixel value.

• Very efficient for high surface resolution.

height_field {
 png "mars.png"
 smooth
 pigment {
 color rgb <0.8,0.8,0.8>
 }
 finish {
 ambient 0.1
 diffuse 0.7
 specular 0.2
 }
 translate <-0.5,0.0,-0.5>
 scale <2,0.2,2>
}

Programming Language

• Comments: // ... or /* ... */

• #declare, #local

• #include

• #while .. #end loops

• #if ... #else ... #end

• #switch, #case, #range, #break ... #end

• #macro .. #end

• #fopen, #fclose, #fread, #fwrite

• functions, builtin and user defined

Programming Example

• See lorenz.pov

• Creates a macro that iterates to create the attractor.

• Note use of #local rather than #declare

// N: Total number of iterations
// h, a, b, c: Parameters describing the attractor
// x0, y0, z0: Seed position
// rad: Radius of spheres/cylinders
#macro lorenz(h, a, b, c, x0, y0, z0, N, rad)
 :
 :
#end

object {
 lorenz(0.001,10,28,8.0/3.0,0.1,0.0,0.0,100000,RADIUS)
 translate -VC
 rotate <0,0,30>
}

Animation

• See aspirin.inc, aspirin.pov, and anim.ini

• clock and frame_number variables can be using in the
scene language
eg: #declare position = <cos(clock*2*pi),sin(clock*2*pi),0>;
eg: rotate <0,0,clock*360>

Exercise: MRI, Part 1

• See the “mri” directory.

• mri.df3 is a density file that can be used as media in a box.

• Experiment with the various commented options or create
your own visual style.

• Options/considerations:
- slicing plane position/angle
- colour maps
- camera animation
- colour map animation
- volume sampling precision

Exercise: MRI, Part 2

• Pre-made isosurfaces “*.inc”, or use “polyr” to create your
own. See the “createiso” file for details.

• #include multiple isosurfaces with variable transparency.

• See vectors.txt for heat flow data

• Options/considerations:
- antialiasing
- specular highlight confusion
- rendering times

Summary

• Very powerful engine for creating compelling
visualisations (Stills and animations). Strengths are high
level geometric primitives, realistic shading/lighting
model, and the programming aspects of the scene files.

• Lots of online resources: http://povray.org/

• Undergoing continual development.

• Appears to be used increasingly for visualisation
especially for applications seeking high visual impact.

