
Visualising Volumetric Fractals
Paul Bourke

The University of Western Australia
Perth, Western Australia
paul.bourke@uwa.edu.au

Abstract -- Fractal images have for many years been a rich
source of exploration by those in computer science who also have
an interest in graphics. They often served as a way of testing the
performance of new computing hardware and to explore the
capabilities of emerging display technologies. While there have
been forays by some into 3D geometric fractals, the 3D
equivalents of the Mandelbrot set have been largely ignored. This
is largely due to the lack of suitable tools for rendering these sets
except perhaps as isosurfaces, a rather unsatisfactory and limited
representation. The following will illustrate the application of
GPU based raycasting, a now relatively standard approach to
volume rendering, to the representation of volumetric fractals.
Leveraging existing software that has been designed for general
volume visualisation allows the interested 3D fractal explorer to
focus on the mathematical generation of the volume data rather
than reinventing the entire volume rendering pipeline.

Keywords -- Volumetric fractals, Chaotic attractors, Iterated
Function Systems, L-Systems, Voxel, Visualisation, Raycasting,
Multidimensions, Hypercomplex.

I. INTRODUCTION

Computer generation and representation of fractals have
been created from the very early days of computer graphics.
Indeed one could say they predate computer graphics as we
know it today because they were originally formed only as
black and white prints on paper by line printers. This
representation employed a technique the relies on the relative
density of characters in the alphabet and is now referred to as
ASCII art [1]. Almost every student of computer science in the
late 80's and early 90's at some stage programmed the famous
Mandelbrot [2] set. Many proceeded to the multitude of
variants [3] with what will be familiar names to many:
Lindenmayer-Systems (L-Systems) [4], chaotic attractors and
iterated function systems (IFS) [5]. These were fertile grounds
in computer graphics because they not only created compelling
and beautiful images but also often forced one to consider the
efficiency of algorithms, the data storage requirements and the
numerical issues as one zoomed into ever increasing depths to
explore and confirm the self-similarity, the key characteristic of
a fractal.

As computer capabilities grew it was natural for those with
an interest in computer graphics to think about extending the
ideas into 3D. For geometric fractals based upon recursive
replacement, this was relatively straightforward. The rendering
tools developed for engineering, architecture and the movie
industry were suited to the geometric primitives involved. The
challenge was often just to create efficient versions so as not to
overload the software, software that was designed to handle the
volume of data likely to be created manually rather than by

automated algorithms. An example of such a geometric
construction might be the Menger sponge [6] or the 3-
dimensional version of the Sierpinski carpet. The sponge is
made up of cube elements, on each iteration the cube is split
into a 3x3x3 grid of cubes each one third the size of the cube in
the previous iteration. On each iteration the central cube as well
as the cube in the center of each face are removed. This
simplistic formation sees the number of cube primitives
increase by a factor 20 on each iteration, a factor that quickly
overwhelms any engineering CAD application. In order to
create higher iterations one needed to consider how to avoid
duplicate faces and how to merge connected coplanar faces
together.

The extension to 3D of the 2D fractals that are continuous
functions on a plane has received much less attention. These
2D fractals in the plane typically have a range of values that are
normally mapped to some colour ramp resulting in some of the
beautiful images we are accustomed to. The Mandelbrot style
fractals being one example, each point on the complex plane
(the image) has an associated number that, normally, relates to
how quickly the underlying series escapes to infinity, or
doesn't. The extension into 3D involves points within a volume
of space instead of a region of a plane. Each point has a value
that may be related to some metric, again, such as an escape
speed. These fractals can be based upon quaternion or
hypercomplex algebra for transforming points in 3 or 4
dimensions respectively. The question then is how to visualise
these volumes, the computer graphics software found in almost
all electronic devices today can readily create 2D fractal
images but the higher dimensional geometry is more
challenging.

The geometric rendering tools in common usage in
architecture, engineering or the movie/entertainment industry
are largely inadequate. One could choose a threshold and draw
a point or small 3D brick for cells that are on one side of that
threshold, the results are unsatisfactory for a few reasons. One
being that the brick resolution in most geometric packages
would not be small enough for a pleasing representation, a
modest resolution may be considered 500x500x500
partitioning of the region in question with a possible 125
million bricks. Another reason why such a technique does have
visual appeal is the shading can only use the 3 planes of the
brick, as such the surfaces do not naturally contain surface
normals and thus do not look smooth. Meaningful surface
normals are not straightforward to derive. The usual approach
is to take samples of the surface a small delta away in three
directions to form an estimate of the normal. This doesn't work
for fractal objects with infinite detail because a different
estimate of the normal will arise for each value of delta, unlike

DOI: 10.5176/2251-3043_5.2.370

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

58

a continuous surface where the estimate of the normal normally
improves as delta is reduced. Similar arguments apply to the
use of points or spheres [7]. Figure 1 illustrates the
unsatisfactory appearance of using bricks and spheres to
represent the Bedouin fractal, see example 1 later.

An improvement that solves these problems might be to
create an isosurface using techniques such as the Marching
Cubes [8] algorithm. This results in a triangular mesh well
suited to viewing in many packages and continuous surface
normals allow for lighting and shading models. However, an
isosurface only conveys a fraction of the geometric information
contained within the volume, there is an infinity of possible
isosurfaces each one conveying different aspects of the same
fractal. Figure 2 illustrates two such isosurfaces, note that the
object appears different in each and due to the fractal nature the
non-smooth appearance of the surface is misleading. The last
two techniques can be improved slightly by adding a degree of
transparency based upon the isosurface. But both the visual
quality and representation of the interior structure is limited.

Figure 1. Top, a sampling of the Bedouin fractal by 1003 bricks (left) and
5003 bricks (right). Bottom, sampling of the Bedouin fractal by 1003 spheres

(left) and 5003 spheres (right).

II. VOLUMETRIC DATA

The sampling within some rectangular bounded region of
space is what is known in many disciplines as a volumetric
data set and the process of representing such data is known as
volume rendering [9] or volume visualisation. Each unit within
the volume (brick) is known as a 3-dimensional pixel, known
as a VOXEL (VOlume piXEL). Volumetric data arise in many

areas of engineering and science, for example the result of a 3D
MRI scan or the representation for simulation in fluid flow. For
a CT scan the value at each 3D pixel is density at that point,
other sources of 3D scans or simulations would have other,
usually but not always, scalar metrics. The process of volume
visualisation involves mapping that density range to colour and
opacity, through what are known as transfer functions, and
subsequently rendering the result with a model of how light
propagates through the volumetric space.

Figure 2. Two isosurfaces Bedouin fractal from an infinite possible number.

There are a plethora of software packages, frameworks and
libraries developed over the years to support volume
visualisation. Many such as OsiriX, 3DSicer and VisageRT are
targeted towards medical volumes, still others are tightly
coupled to the medical scanners themselves. Most general
visualisation packages, for example, ParaView and Amira
provide volume rendering capabilities, a reflection that
volumetric data is considered a key data type in the science and
engineering fields.

Volume rendering has always been challenging to perform
in real time even with the recent use of graphics hardware [10].
While the general techniques have existed for some time, the
performance is directly related to the size of the volume. As
computing and graphics capabilities have advanced over the
years, so has the size of the volumes. Volumes derived from
simulation, for example in engineering and astrophysics, have
grown as computing power has allowed more fine grain
simulations to be performed. Volumes have similarly increased
in size as 3D scanners have improved, especially in medical
and geoscience. At the same time quality of the renderings has
improved due largely to the current ray casting approach which
is well suited to GPU implementations. Additional visual
appeal has been made possible by considering not just the
scalar value at each voxel but the gradient in the local
neighbourhood. Examples of so-called 2-dimensional transfer
functions (voxel value plus local gradient) are Simian [11] and
more recently Drishti [12].

III. DATA GENERATION

Volume rendering is still a challenging process and
efficiencies need to be considered. For a given graphics

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

59

hardware capability the number of voxels on each axis is
limited, one cannot create an arbitrarily large volume in order
to support deep zooms, such solutions generally involve
bespoke rendering algorithms [13]. So given a manageable
volume resolution, say 10243 voxels, one needs to choose
where that available resolution is positioned and scaled in
space in order to represent the region of the fractal in question.
This is no different to a 2D fractal representation where one
maps the image bounds to a region of the plane in which the
fractal resides.

The dynamic range of many volume rendering packages is
also limited, largely due to memory limitations. A larger
volume can reside in memory if it only has 1 byte per voxel
rather than a floating point number requiring 4 bytes. The
approach taken by the author is to use a single byte per voxel.
The volume may be created with a higher dynamic range,
typically floats (4 bytes), but exported to a reduced dynamic
range given a knowledge of the voxel value distribution. This
may be as simple as a linear mapping between the minimum
and maximum values, or it may be nonlinear in the case of
extremely high dynamic ranges.

Voxel!
value

Local !
gradient

0

Maximum!
gradient

Minimum!
value

Maximum!
value

Opacity

Opaque

Transparent

0

Maximum!
gradient

Voxel!
value

Voxel!
value

Figure 3. An example of a transfer function specification.

There are a number of data formats that may be used to
store the volume, unfortunately there are no standards in
widespread usage. Various disciplines have their own widely
supported formats, for example DICOM in the medical space
and FITS in astronomy. The lowest common denominator is
just a raw, unstructured file containing the voxel values. Most
volume renderers will provide a means of reading such data,
once the dimensions of the volume are supplied by the user or
read from the header of the file. There are other ad-hoc headers

that precede the raw data that provide the dimensions in voxels,
voxel depth, and for instrument scanners the physical
dimensions and other meta data. While not ideal, the
unstructured raw data format is proposed due to generality and
ease of use, both data reading and writing.

IV. VOLUME RENDERING

It is not the intent of this document to describe a particular
rendering approach but the algorithm used here is based upon
the volume being loaded into texture memory on the graphics
card and view aligned triangles are textured and composited
together [14]. The basic operation of all volume rendering is
for the operator to choose a mapping between voxel values
(assumed to be scalars), and colour and opacity, known as a
transfer function. The colour mapping can be thought of as
similar to the application of a colour map to a continuous 2D
fractal. Opacity is now required because in 3D one may wish to
see through outer layers into the inner structure. An additional
capability of many volume rendering tools is for the operator to
also vary the transfer function based upon local gradient. This
provides addition control over the appearance of regions that
are changing quickly compared to regions of similar voxel
values that are changing more slowly. A notional interface for a
2D transfer function is shown in figure 3. The colour mapping
is normally performed in the same 2D space as the voxel value
and gradient. The transparency, alpha channel, is a 1D function
of the voxel value.

Once the transfer function is defined, the rendering process
(in this case) consists of classical ray casting. Rays are cast
from the virtual camera, through each pixel on the screen and
through the volume. A model is applied that specifies how the
ray is affected by the voxels, that is, by their colour and
opacity.

In what follows are three examples illustrating the
application of volume visualisation algorithms as applied in
many areas of science, to 3 or higher dimensional fractals.
Three fractals have been chosen that are not widely known and
of three distinct classes, a standard escape style Mandelbrot, a
4-dimensional volume sampled with a cutting plane to yield a
3D volume, and a chaotic attractor.

A. Example 1
The first example is from equations proposed by Russell

Walsmith and affectionately named the Bedouin fractal
although known previously in other circles as the RockBrot.
The volume data is created by considering a point (x0,y0,z0)
within the region of space of interest and evaluating the
following series.

xn+1=a+sin(x0)

yn+1=a+sin(y0)

zn+1=a+sin(z0) (1)

where

a=xn
2-yn

2-zn
2

b=xnzn

c=2xnyn (2)

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

60

This is similar to the usual quaternion Mandelbrot but with
two of the axes swapped.

The voxel is assigned a value depending on how quickly it
escapes to infinity, the range is mapped linearly to a byte value
from 0 to 255. The volume resolution is 10243 (data size of
1GB) and is suited to interactive performance on a laptop style
graphics card, for example an AMD Radeon R9 M370X with
2048MB of memory. Figure 4 shows a rendering of the
Bedouin fractal, this is the same example used to illustrate the
poor representation by bricks, spheres and isosurfaces in figure
1 and 2.

Note that most of the observed structure actually has the
same voxel value, the differences in colour arise from colours
mapped to the gradient.

Figure 4. Bedouin fractal on the domain -1.7 ≤ x ≤ 1.0, -1.4 ≤ y ≤ 1.4, -1.4 ≤
z ≤ 1.4.

B. Example 2
This example is based on equations by Marius-F Danca

[15,16] aimed at illustrating that for the alternated Julia sets,
the Mandelbrot set consists of the set of all parameter values
for which each alternated Julia set is not only connected, but
also disconnected and totally disconnected.

These volume fractals also illustrate how quickly a series
escapes but in this case it is a 4-dimensional volume, we can
render out slices in one dimension resulting in a 3D volumetric
dataset. Since each slice yields one 3 dimensional object
changing the slice position and angle results in an animation
sequence. The series is defined as

zn+1=(zn
2+c1)+c2 , zi and ci ∈ C, n ∈ N (3)

where the complex numbers c1 and c2 define the 4-
dimensional volume. Figure 5 illustrates one such slice

achieved by setting the real value of c2 to zero.

In this example the ability to employ transparency is critical
to representing the very fine structures that have only very
slightly different voxel values to the main body.

C. Example 3
This final example is based upon equations originally

provided by Roger Bagula, the form is currently unnamed. This
is a 3 dimensional iterated function system, a chaotic attractor.
On each iteration of the function, a new point in 3D is created,
these points lie on the attractor surface. The straightforward
method of representing such attractors in 3D might be to place
a small sphere at each point in the series. While such
representations can be rendered by traditional surface rendering
software, the results are generally unappealing for some of the
same reasons discussed earlier. Specifically the limits on the
number of points and the lack of surface shading.

By computing this series to billions of terms and
accumulating the number of times a point on the attractor lands
in each voxel region a continuous "smooth" attractor surface is
formed across the volume of space of interest.

pn+1(x,y,z) = (2pn(x),2pn(y),1-pn
2(x)-pn

2(y)) / Axy+(-1,-1,0)
pn+1(x,y,z = (1-pn

2(z)-pn
2(y),2pn(y),2pn(z)) / Ayz+(0,-1,-1)

pn+1(x,y,z) = (2pn.x,1-pn
2(z) - pn

2(x),2pn(z)) / Axz+(-1,0,-1)
pn+1(x,y,z) = pn(x,y,z)/ 2
pn+1(x,y,z) = pn(x,y,z)/ 2 + (1,1,1) (4)

Where

Axy = 1 + pn
2(x) + pn

2(y)
Ayz = 1 + pn

2(y) + pn
2(z)

Azx = 1 + pn
2(z) + pn

2(x) (5)

Figure 5. One of an infinite number of slices of the 4-dimensional fractal.
This is a slice by the plane Re(c2)=0. The domain is [-2,2] on all axes.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

61

Figure 6 is a volume render of a 5123 volume created from
the first 500 million points of the attractor series. Colour
mapping designed to provide a biological look, the redder
portions are those with a higher density of attractor points.
Traditional means of drawing solid points at each position on
the attractor doesn't reveal the structure seen here. This is
essentially a volume rendering of a 3D histogram.

Figure 6. Unnamed attractor by Roger Bagula. Domain is [-2,2] on all axes.

CONCLUSION
Presented is a means of interactively exploring volumetric

fractals that is within the reach of anyone with a computer with
a reasonably capable graphics card. It removes the need to
develop one's own volume rendering solution but rather
leverages the extensive research already conducted in that area.
The approach is general in that the volume creation,
mathematics, is decoupled from the rendering system. It is
additionally based upon existing volume rendering software,
the example employed here is free. The downside is that while
the visualisation is performed in real time, zooming requires a
new volume to be created.

30 years on from the early days of fractal generation it is
now possible to escape from the 2D plane opening up a whole
new area of investigation and creative opportunities.

ACKNOWLEDGEMENT
The volume rendering is performed using Drishti, an

interactive volume exploration and presentation tool developed
by Ajay Limaye at the Australia National University.

REFERENCES
[1] F.P. Miller, A.F. Vandome, J. McBrewster. ASCII art: Emoticon,

Webcomic, List of text editors, ASCII art converters, ANSI art, Shift JIS
art, Unicode, ASCII stereogram,FILE ID. DIZ, . nfo, ASCII porn. Alpha

Press ©2009. ISBN:6130070446 9786130070441
[2] B. B. Mandelbrot (1977). Fractals form, chance, and dimension.

Published 1977 by W. H. Freeman in San Francisco.
[3] H.-O. Peitgen, D. Saupe. (1988) The science of fractal images, Springer-

Verlag, New York.
[4] P. Prusinkiewicz, A. Lindenmayer. (1990). The Algorithmic Beauty of

Plants. Springer-Verlag, New York.
[5] M. Barnsley. A. Vince (2010). The Chaos Game on a General Iterated

Function System. Ergodic Theory Dynam. Systems 31 (2011), no. 4,
1073–1079.

[6] K. Menger (1926), "Allgemeine Räume und Cartesische Räume. I.",
Communications to the Amsterdam Academy of Sciences. English
translation reprinted in Edgar, Gerald A., ed. (2004), Classics on
fractals, Studies in Nonlinearity, Westview Press. Advanced Book
Program, Boulder, CO, ISBN 978-0-8133-4153-8.

[7] S. Nikiel, A. Goinski. Generation of volumetric quadratic map basins.
Computers & Graphics. volume 27 issue 6. pp 977-982.

[8] W. E. Lorensen, H. E. Cline. (1987) Marching Cubes: A high resolution
3D surface construction algorithm. In: Computer Graphics, Vol. 21, Nr.
4, July 1987

[9] R.A. Drebin, L. Carpenter, P. Hanrahan. (1988) Volume Rendering.
SIGGRAPH ’88 Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, ACM NY 22, 65–74

[10] J. Kniss, G. Kindlmann, C. Hansen. (2001) Interactive Volume
Rendering Using Multi-Dimensional Transfer Functions and Direct
Manipulation Widgets. Visualization 2001.

[11] P. Bhaniramka, Y. Demange, “OpenGL volumizer: a toolkit for high
quality volume rendering of large data sets”, Proceedings of the 2002
IEEE symposium on Volume visualization and graphics: 45-54, 2002.

[12] A. Limaye. (2012) Drishti: a volume exploration and presentation tool.
Proc. SPIE 8506, Developments in X-Ray Tomography VIII, 85060X
(October 17, 2012); doi:10.1117/12.935640. From Developments in X-
Ray Tomography VIII. San Diego, California, USA | August 12, 2012.

[13] B. Rama., J Mishra. (2012) Game-enabling the 3D-Mandelbulb Fractal
by adding Velocity-induced Support Vectors. International Journal of
Computer Applications 48(1) 1-3 · June 2012

[14] B. Cabral, N. Cam, J. Foran, Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware, 1994
Symposium on Volume Visualization: 91-98, 1994.

[15] M.-F. Danca, M. Romera, G. Pastor. (2009) Alternate Julia sets and
connectivity properties. International Journal of Bifurcation. Chaos 19,
2123–2129.

[16] M.-F. Danca, P. D. Bourke, M. Romera. (2013) Graphical exploration of
the connectivity sets of alternated Julia sets; M, the set of disconnected
alternated Julia sets. Nonlinear Dynamics, Springer, March. DOI:
10.1007/s11071-013-0859-y.

Author's Profile
Paul Bourke has worked as a visualisation researcher

for most of his diverse career. In his various University
roles, including positions as a Centre Director and Professor,
he has applied visualisation to architecture, brain science,
astrophysics and heritage. A visualisation research interest
includes the application of novel and emerging data
capture and display technologies. This involves displays
that leverage the capabilities of the human visual system
and how these may be used to facilitate insight in scientific
research and increase engagement for public outreach
and education. Paul has additionally been an early adopter
of the application of fractal geometry to the representation of
form, particular applications being to landscape architecture
and patterns found in the human body and nature in
general.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

62

