
A space filling algorithm for generating
procedural geometry and texture

Paul Bourke

iVEC@UWA, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009.
Email: paul.bourke@uwa.edu.au

Abstract -- Here we present an algorithm for procedurally
generating a range of digital assets including 2 dimensional
textures and 2.5 dimensional texture roughness. The approach
involves placing shapes randomly, without overlap and with a
monotonically decreasing area, within a region on a plane (the
2 dimensional texture). If the process is continued to infinity
then the result is space filling thus providing a variable and
potentially infinite degree of visual detail. It will be proposed
and illustrated that the process is independent of the actual
shape being used and as such can find application to a range of
texture effects. As a means of generating texture and form
procedurally the result has the other desirable property of
being fractal, that is, self similar across scales which is
characteristic of many packings that occur in nature.

Index terms -- procedural, texture, tiling, packing, space
filling.

I. INTRODUCTION
 The algorithmic (procedural) generation of assets,
texture and geometry, within virtual worlds and for the
digital movie industry is well established. Well known
examples include various noise [1] and fractal based
techniques for the generation of terrain [2], clouds [3], and
plants [4]. These examples and others often involve fractal
processes, not only because many natural phenomena can be
represented by fractals, but fractal processes generally allow
one to create geometric detail on demand and when or
where required, for example, creating texture only in front
of the player in a first person view. This ability to create
variable levels of detail ensures distant objects or objects out
of view can be represented at a lower geometric detail. The
detail generated can increase as the viewer gets closer and
can appreciate the higher resolution. There are other
desirable properties of procedural methods including the
ability to control performance by generating more or less
detail and reducing the payload, detail is generated rather
than contained within high resolution images or other data
structures. The fact that it is generated also allows for
random variation, that is, slightly different textures can be
generated reducing the appearance of repetition in a scene.

Fractal processes by definition are those with self
similarity across scales, that is, as one zooms into the object
it looks similar to the zoomed out view. One would expect
then that a process that is intended to mimic natural forms
would need to possess this same property.

The above are some desirable properties such a
procedural generator of textures should possess; the main
ones are summarised here

• The ability to create the texture at variable levels of
detail. For example, distant objects do not need as
resolved textures as close objects.

• The texture detail can increase smoothly as it is
inspected more closely. Absence of this results in so
called “popping” in many level of detail (LOD)
algorithms where the additional detail is introduced at
discrete distances and thus appears as an abrupt visual
artifact.

• Textures need to optionally be able to tile the plane
seamlessly. This allows a small texture unit to be used to
cover a large region.

• The texture can be generated with random variation,
usually given by a random number generator seed.

• As an efficient way of delivering detail it must be able to
be generated quickly and ideally with simple algorithms.

Fig 1. a) Appolonian packing. b) Sierpinski gasket.

As an introduction to the algorithm we will present how
it may be used to create textures, both image based and 2.5
dimensional surface roughness. It should be noted that the
general technique readily extends into other dimensions and
has been studied extensively in both 1 and 3 dimensions [5].
The process outlined here also provides a new answer to the
question of how one might fill a bounded region with an
infinite number of identical shapes (this will be relaxed
later) so as to eventually fill the region, that is, fill in all the
gaps, also referred to as the gasket [6].

An existing packing solution and one that has been
studied extensively is a family known as Apollonian [7][8]
packings. In the most general form, shapes are iteratively
introduced randomly at empty locations, they grow and
perhaps move until they touch one or more existing shapes
or when they cannot move or grow any further. Other
solutions are recursive fractals such as the Sierpinski gasket
[9] in which triangles fill the plane. These are both fractal
and can be space filling, they both have the property that the
objects touch, known as "kissing". They have been used as
models of packing in nature, such as pore spaces [10] and
rock packings. However casual inspection of many packings
in nature show that this kissing property doesn't exist, some
examples are shown in figure 2.

The packing presented here on the other hand sees
shapes with a particular size added iteratively at random
locations. If the shape does not overlap with any existing
shape then it is placed permanently at that position
otherwise a new random position is tried. The shape does
not grow to fill the available gaps, and thus in general the
shapes to not touch other shapes, rather the algorithm
determines the size of each shape in advance. The question
then is “what is the monotonically decreasing function that
determines the size of the added shape at the current
iteration”. Clearly, if the size decreases too quickly then
space filling will not be achieved. If the size decreases too
slowly then the process will run out of space, there will be
no gap large enough to add the next shape such that it
doesn’t overlap with the existing shapes.

Fig 2. Selection of natural packings that do not exhibit the kissing property,
lily pond fronds, pore spacing in breads, rock packings, and bubbles.

II. ALGORITHM
 If 𝐴! is the area of the first shape and 𝑔 𝑖 is the area
scaling of the shape on each iteration i then the series of
areas is given by

𝐴!,𝐴! 𝑔 1 ,𝐴! 𝑔 2 ,… ,𝐴! 𝑔 𝑛 ,… (1)
 The total area 𝐴 is given by the sum of the above terms,
namely

𝐴 = 𝐴! 𝑔(𝑖)
!

!!!

 (2)

 Therefore one is seeking a series 𝑔(𝑖) that is
monotonically decreasing and sums to a constant, namely
the area to be filled. If 𝑔(𝑖) decreases too fast then space
filling is not achieved, if it doesn’t decrease fast enough the
procedure fails due to insufficient space for the next shape,
see figure 3. While the discussion here concentrates on
space filling, low values of g(i) can be used as models for
where space filling does not occur, or occurs over a limited
range of scales.
 A series that satisfies the requirement and the one used
here to achieve space filling is as follows

𝑔 𝑖 =
1
𝑖!

 (3)

where c is some constant. This series is recognised as the
Riemann Zeta function [11] which is known to converge for
c > 1. For space filling one can choose a value of c, the sum
of the series is used to determine the value of 𝐴! given the
area 𝐴 to be filled. Alternatively 𝐴! can be chosen which in
turn determines the value of c for space filling.
 The algorithm can be summarised as follows. Decide
upon the bounded region to be filled and calculate the area A.
Choose a value of c and based upon that and the sum of 𝑔(𝑖)
calculate the area of the first shape 𝐴!. On each iteration
choose a random position from a uniform distribution for the
current shape of area 𝐴! 𝑔 𝑖 . If the shape positioned at this
candidate position does not result in any overlap with
current shapes or the boundary then place the shape at this
position, otherwise keep trying other randomly selected
positions until successful placement can be made. Given the
series proposed here and for a range of values of c, a space
will always be available for the next shape.

There are four requirements for an implementation that
creates these space fillings:
1. A function that calculates the area of the shape given the

parameters that define the shape.
2. A function that calculates the parameters of the shape

given the area. This is essentially the inverse of the
function in requirement (1).

3. A function that performs an intersection test between a
shape and the boundary of the region being filled. This is
used to determine whether the shape lies within the
boundary and is also used to decide on issues of tiling.

4. A function that performs an intersection test between
two shapes. This is performed on each proposed
placement to ensure the shape to be added does intersect
any existing shape, this is the computationally critical
comparison since it is applied between the shape to be
added at the current iteration and every existing shape.

III. PROPERTIES
 The value of c controls the fractal dimension. For
an embedding in dimension D (1, 2, 3 ...) the fractal
dimension d is given by
 d = D / c (4)
 Not any value of c may be chosen, in each
dimension there is an upper limit [5] and the limit
depends on the shape being packed. For example in two
dimensions (D=2) and for spheres the maximum value
of c is close to 1.5.

Fig 3. a) g i decreases too fast [2000 circles], b) 𝑔(𝑖) decreases too slowly
[no space after 200 circles], c) 𝑔(𝑖) decreases as presented to achieve space
filling [5000 circles].

 If c and Ao are chosen as proposed then it is the authors
claim that the process does not halt, that is, it does indeed
allow an infinite space filling packing.
 When used to create textures that tile seamlessly within a
rectangular bounded region of width w and height h, the
algorithm can be modified such that when a placement is
made it is also performed at +-w and +-h. Figure 4 illustrates
examples of tileable textures, bounded by a square but with
toroidal boundary conditions. By comparison the examples
in figure 3 were bounded within a square.
 The derivation says nothing about the shape itself, only
the area. As such the algorithm will work for any shape and
indeed even for mixtures of shapes so long as the decreasing
function of area on each iteration, g(i), is honoured. While
this property is difficult to prove, it feels intuitively correct
and the authors have not identified any shapes that cause the
algorithm to fail. This includes shapes with holes, which
also get filled, see figure 4 and highly convoluted shapes,
see figure 5.

The algorithm is not limited to filling rectangular regions,
indeed any shaped region can be filled, with any shape. This
capability only requires an intersection test between the
shape being tiled and the boundary shape. An example is
presented in figure 6, circles filling a toroidal shape. Note
that this is a relatively rare property for texturing which is
normally based upon rectangular patches and thus often
does not look natural at the boundaries of non-rectangular
regions.

Figure 5 is an example of a non-simple shape being used
for the filling. Extensive experimental tests have been
performed with a range of fllling and boundary shapes, no
combinations have resulted in the algorithm failing, at least
for a range of values of c.
 The objects are placed randomly within the region being
filled. The same random number sequence will produce the
same result, similarly variation can be achieved with
different random number seeds. The macroscopic
appearance of the texture is largely determined by the
placement of the first few objects, this is to be expected and
indeed is the case for packings found in nature, they are
dominated by the largest objects.

A minor modification to control the size of the first
shape (and all subsequent shapes) is to modify the function
of g(i) to

𝑔 𝑖 =
1

(𝑖 + 𝑁)!
 (5)

 Where N can be any positive real number but is usually
an integer. In general this lowers the size of the early shapes
while at the same time reducing the rate at which subsequent
shapes reduce in area.
 The algorithm is readily extended into other dimensions.
In one dimension it transforms into packing line segments
into a length L. The function g(i) now defines how the
length of each line segment is reduced on each iteration, so
similar to equation 2.

𝐿 = 𝐿! 𝑔(𝑖)
!

!!!

 (6)

 In three dimensions 𝑔(𝑖) governs how the volume of
each shape reduces on each iteration.

Fig 4. Examples of different shapes and toroidal boundary conditions
Randomly orientated pyramids (Upper). Shapes with holes (Lower).

Fig 5. Filling with highly convoluted shapes.

Fig 6. Example of non-rectangular bounded regions.

Fig 7. Illustration of self similarity across scales.

V. CONCLUSION
We have introduced a new algorithm with many of the

features that are desirable for creating procedural multi-
resolution 2 dimensional textures. The procedural and
iterative properties of this algorithm make it ideal for
creating textures and geometry at sufficient detail to meet
frame rate dictated performance constraints within a gaming
engine dependent on the players distance and viewing
direction. The algorithm allows for texture generation over a
range of fractal dimensions and readily supports the ability
to create tileable textures within rectangular regions. The
algorithm is simple to implement and can be computed
quickly. It results in self similarity across scales and as thus
is likely to provide textures that appear similar to naturally
occurring texture.

ACKNOWLEDGEMENT
 The algorithm presented has been inspired by John Shier
[6] who conducted the pioneering research under the title of
“statistical geometry”. The work was supported by iVEC
through the use of advanced computing resources located at
the University of Western Australia.

REFERENCES
[1] S. Green. nVidia Corporation. "Implementing Improved Perlin

Noise". GPU Gems 2, Chapter 26,
[2] J.P. Lewis. "Generalized Stochastic Subdivision", Vol 6, 3 (1987)
[3] G.Y. Gardner. "Visual Simulation of Clouds". SIGGRAPH '85

Proceedings of the 12th annual conference on Computer graphics
and interactive techniques..

[4] P. Prusinkiewicz, A. Lindenmayer. "The Algorithmic Beauty of
Plants". Springer-Verlag. (1990). ISBN 978-0-387-97297-8.

[5] J. Shier, P.D. Bourke. An Algorithm for Random Fractal Filling of
Space. Computer Graphics Forum. 2013 [In Press].

[6] J Shier. "Filling Space with Random Fractal Non-Overlapping
Simple Shapes". Hyperseeing summer 2011 issue, pp. 131-140,
published by ISAMA (International Society of the Arts, Mathematics,
and Architecture).

[7] P.D. Bourke. "Appolony fractal". Computers and Graphics, Vol 30,
Issue 1, January 2006.

[8] C.A. Pickover. "Cleopatra's Necklace and the Aesthetics of
Oscillatory Growth". The Visual Computer, Vol 9, No 3.

[9] I. Stewart. "Four Encounters with Sierpinski's Gasket". The
Mathematical Intelligencer, 17, No. 1 (1995.

[10] Y.T. Wu, C.X Yang, X.G Yuan. "Drop distributions and numerical
simulation of drop wise condensation heat transfer". International
Journal of Heat and Mass Transfer, 44 (2001).

[11] T.M. Apostol. "Zeta and Related Functions". NIST Handbook of
Mathematical Functions, Cambridge University Press, ISBN 978-
0521192255

[12] P.D. Bourke, J. Shier. The authors' web sites
http://paulbourke.net/randomtile
http://john-art.com

[13] S. Greuter, J. Parker, N. Stewart, G. Leach. "Real-time procedural
generation of `pseudo infinite' cities". GRAPHITE '03 Proceedings
of the 1st international conference on Computer graphics and
interactive techniques in Australasia and South East Asia.

