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Abstract -- Here we present an algorithm for procedurally 
generating a range of digital assets including 2 dimensional 
textures and 2.5 dimensional texture roughness. The approach 
involves placing shapes randomly, without overlap and with a 
monotonically decreasing area, within a region on a plane (the 
2 dimensional texture). If the process is continued to infinity 
then the result is space filling thus providing a variable and 
potentially infinite degree of visual detail. It will be proposed 
and illustrated that the process is independent of the actual 
shape being used and as such can find application to a range of 
texture effects. As a means of generating texture and form 
procedurally the result has the other desirable property of 
being fractal, that is, self similar across scales which is 
characteristic of many packings that occur in nature. 

Index terms -- procedural, texture, tiling, packing, space 
filling. 

I. INTRODUCTION 
 The algorithmic (procedural) generation of assets, 
texture and geometry, within virtual worlds and for the 
digital movie industry is well established. Well known 
examples include various noise [1] and fractal based 
techniques for the generation of terrain [2], clouds [3], and 
plants [4]. These examples and others often involve fractal 
processes, not only because many natural phenomena can be 
represented by fractals, but fractal processes generally allow 
one to create geometric detail on demand and when or 
where required, for example, creating texture only in front 
of the player in a first person view. This ability to create 
variable levels of detail ensures distant objects or objects out 
of view can be represented at a lower geometric detail. The 
detail generated can increase as the viewer gets closer and 
can appreciate the higher resolution. There are other 
desirable properties of procedural methods including the 
ability to control performance by generating more or less 
detail and reducing the payload, detail is generated rather 
than contained within high resolution images or other data 
structures. The fact that it is generated also allows for 
random variation, that is, slightly different textures can be 
generated reducing the appearance of repetition in a scene. 

Fractal processes by definition are those with self 
similarity across scales, that is, as one zooms into the object 
it looks similar to the zoomed out view. One would expect 
then that a process that is intended to mimic natural forms 
would need to possess this same property. 

The above are some desirable properties such a 
procedural generator of textures should possess; the main 
ones are summarised here 

• The ability to create the texture at variable levels of 
detail. For example, distant objects do not need as 
resolved textures as close objects. 

• The texture detail can increase smoothly as it is 
inspected more closely. Absence of this results in so 
called “popping” in many level of detail (LOD) 
algorithms where the additional detail is introduced at 
discrete distances and thus appears as an abrupt visual 
artifact. 

• Textures need to optionally be able to tile the plane 
seamlessly. This allows a small texture unit to be used to 
cover a large region. 

• The texture can be generated with random variation, 
usually given by a random number generator seed. 

• As an efficient way of delivering detail it must be able to 
be generated quickly and ideally with simple algorithms. 

 
Fig 1. a) Appolonian packing. b) Sierpinski gasket. 



As an introduction to the algorithm we will present how 
it may be used to create textures, both image based and 2.5 
dimensional surface roughness. It should be noted that the 
general technique readily extends into other dimensions and 
has been studied extensively in both 1 and 3 dimensions [5]. 
The process outlined here also provides a new answer to the 
question of how one might fill a bounded region with an 
infinite number of identical shapes (this will be relaxed 
later) so as to eventually fill the region, that is, fill in all the 
gaps, also referred to as the gasket [6]. 

An existing packing solution and one that has been 
studied extensively is a family known as Apollonian [7][8] 
packings. In the most general form, shapes are iteratively 
introduced randomly at empty locations, they grow and 
perhaps move until they touch one or more existing shapes 
or when they cannot move or grow any further. Other 
solutions are recursive fractals such as the Sierpinski gasket 
[9] in which triangles fill the plane. These are both fractal 
and can be space filling, they both have the property that the 
objects touch, known as "kissing". They have been used as 
models of packing in nature, such as pore spaces [10] and 
rock packings. However casual inspection of many packings 
in nature show that this kissing property doesn't exist, some 
examples are shown in figure 2. 

The packing presented here on the other hand sees 
shapes with a particular size added iteratively at random 
locations. If the shape does not overlap with any existing 
shape then it is placed permanently at that position 
otherwise a new random position is tried. The shape does 
not grow to fill the available gaps, and thus in general the 
shapes to not touch other shapes, rather the algorithm 
determines the size of each shape in advance. The question 
then is “what is the monotonically decreasing function that 
determines the size of the added shape at the current 
iteration”. Clearly, if the size decreases too quickly then 
space filling will not be achieved. If the size decreases too 
slowly then the process will run out of space, there will be 
no gap large enough to add the next shape such that it 
doesn’t overlap with the existing shapes. 

 
Fig 2. Selection of natural packings that do not exhibit the kissing property, 
lily pond fronds, pore spacing in breads, rock packings, and bubbles. 

II. ALGORITHM 
 If 𝐴! is the area of the first shape and 𝑔 𝑖  is the area 
scaling of the shape on each iteration i then the series of 
areas is given by 

𝐴!,𝐴!  𝑔 1 ,𝐴!  𝑔 2 ,… ,𝐴!  𝑔 𝑛 ,… (1) 
 The total area 𝐴 is given by the sum of the above terms, 
namely 

𝐴 = 𝐴!      𝑔(𝑖)
!

!!!

 (2) 

 Therefore one is seeking a series 𝑔(𝑖)  that is 
monotonically decreasing and sums to a constant, namely 
the area to be filled. If 𝑔(𝑖) decreases too fast then space 
filling is not achieved, if it doesn’t decrease fast enough the 
procedure fails due to insufficient space for the next shape, 
see figure 3. While the discussion here concentrates on 
space filling, low values of g(i) can be used as models for 
where space filling does not occur, or occurs over a limited 
range of scales. 
 A series that satisfies the requirement and the one used 
here to achieve space filling is as follows 

𝑔 𝑖 =   
1
𝑖!

 (3) 

where c is some constant. This series is recognised as the 
Riemann Zeta function [11] which is known to converge for 
c > 1. For space filling one can choose a value of c, the sum 
of the series is used to determine the value of 𝐴! given the 
area 𝐴 to be filled. Alternatively 𝐴! can be chosen which in 
turn determines the value of c for space filling. 
 The algorithm can be summarised as follows. Decide 
upon the bounded region to be filled and calculate the area A. 
Choose a value of c and based upon that and the sum of 𝑔(𝑖) 
calculate the area of the first shape 𝐴!. On each iteration 
choose a random position from a uniform distribution for the 
current shape of area 𝐴!  𝑔 𝑖 . If the shape positioned at this 
candidate position does not result in any overlap with 
current shapes or the boundary then place the shape at this 
position, otherwise keep trying other randomly selected 
positions until successful placement can be made. Given the 
series proposed here and for a range of values of c, a space 
will always be available for the next shape. 

There are four requirements for an implementation that 
creates these space fillings: 
1. A function that calculates the area of the shape given the 

parameters that define the shape. 
2. A function that calculates the parameters of the shape 

given the area. This is essentially the inverse of the 
function in requirement (1). 

3. A function that performs an intersection test between a 
shape and the boundary of the region being filled. This is 
used to determine whether the shape lies within the 
boundary and is also used to decide on issues of tiling. 

4. A function that performs an intersection test between 
two shapes. This is performed on each proposed 
placement to ensure the shape to be added does intersect 
any existing shape, this is the computationally critical 
comparison since it is applied between the shape to be 
added at the current iteration and every existing shape. 



III. PROPERTIES 
 The value of c controls the fractal dimension. For 
an embedding in dimension D (1, 2, 3 ...) the fractal 
dimension d is given by 
 d = D / c (4) 
 Not any value of c may be chosen, in each 
dimension there is an upper limit [5] and the limit 
depends on the shape being packed. For example in two 
dimensions (D=2) and for spheres the maximum value 
of c is close to 1.5. 

 
Fig 3. a) g i  decreases too fast [2000 circles], b) 𝑔(𝑖) decreases too slowly 
[no space after 200 circles], c) 𝑔(𝑖) decreases as presented to achieve space 
filling [5000 circles].  

  
 If c and Ao are chosen as proposed then it is the authors 
claim that the process does not halt, that is, it does indeed 
allow an infinite space filling packing. 
 When used to create textures that tile seamlessly within a 
rectangular bounded region of width w and height h, the 
algorithm can be modified such that when a placement is 
made it is also performed at +-w and +-h. Figure 4 illustrates 
examples of tileable textures, bounded by a square but with 
toroidal boundary conditions. By comparison the examples 
in figure 3 were bounded within a square. 
 The derivation says nothing about the shape itself, only 
the area. As such the algorithm will work for any shape and 
indeed even for mixtures of shapes so long as the decreasing 
function of area on each iteration, g(i), is honoured. While 
this property is difficult to prove, it feels intuitively correct 
and the authors have not identified any shapes that cause the 
algorithm to fail. This includes shapes with holes, which 
also get filled, see figure 4 and highly convoluted shapes, 
see figure 5. 

The algorithm is not limited to filling rectangular regions, 
indeed any shaped region can be filled, with any shape. This 
capability only requires an intersection test between the 
shape being tiled and the boundary shape. An example is 
presented in figure 6, circles filling a toroidal shape. Note 
that this is a relatively rare property for texturing which is 
normally based upon rectangular patches and thus often 
does not look natural at the boundaries of non-rectangular 
regions. 

Figure 5 is an example of a non-simple shape being used 
for the filling. Extensive experimental tests have been 
performed with a range of fllling and boundary shapes, no 
combinations have resulted in the algorithm failing, at least 
for a range of values of c. 
 The objects are placed randomly within the region being 
filled. The same random number sequence will produce the 
same result, similarly variation can be achieved with 
different random number seeds. The macroscopic 
appearance of the texture is largely determined by the 
placement of the first few objects, this is to be expected and 
indeed is the case for packings found in nature, they are 
dominated by the largest objects. 

A minor modification to control the size of the first 
shape (and all subsequent shapes) is to modify the function 
of g(i) to 

𝑔 𝑖 =   
1

(𝑖 + 𝑁)!
 (5) 

 Where N can be any positive real number but is usually 
an integer. In general this lowers the size of the early shapes 
while at the same time reducing the rate at which subsequent 
shapes reduce in area. 
 The algorithm is readily extended into other dimensions. 
In one dimension it transforms into packing line segments 
into a length L. The function g(i) now defines how the 
length of each line segment is reduced on each iteration, so 
similar to equation 2. 

𝐿 = 𝐿!      𝑔(𝑖)
!

!!!

 (6) 

 In three dimensions 𝑔(𝑖) governs how the volume of 
each shape reduces on each iteration.  
 



 
Fig 4. Examples of different shapes and toroidal boundary conditions 
Randomly orientated pyramids (Upper). Shapes with holes (Lower).  

 
Fig 5. Filling with highly convoluted shapes. 
   
  

 
Fig 6. Example of non-rectangular bounded regions. 

 
Fig 7. Illustration of self similarity across scales. 
  



V. CONCLUSION 
We have introduced a new algorithm with many of the 

features that are desirable for creating procedural multi-
resolution 2 dimensional textures. The procedural and 
iterative properties of this algorithm make it ideal for 
creating textures and geometry at sufficient detail to meet 
frame rate dictated performance constraints within a gaming 
engine dependent on the players distance and viewing 
direction. The algorithm allows for texture generation over a 
range of fractal dimensions and readily supports the ability 
to create tileable textures within rectangular regions. The 
algorithm is simple to implement and can be computed 
quickly. It results in self similarity across scales and as thus 
is likely to provide textures that appear similar to naturally 
occurring texture. 
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