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Minimization of prediction errors
during cerebral embryogenesis
and the emergence of agency

James Joseph Wright* and Paul David Bourke

Centre for Brain Research, School of Medicine, University of Auckland, Auckland, New Zealand

A theory of self-organization in the central nervous system is described,
proposing that additive and dissipative synaptodendritic summation leads to
synchronous oscillation as the equilibrium state, thereby underpinning a primary
mechanism of prediction error minimization. As a consequence, synaptic
connections become arranged in mirror-symmetric paired patterns, wherein
exchanges of synaptic flux within each pattern form coupled spatial eigenmodes.
The mirror-reflection axis between each pair functions as a Markov blanket that
maintains excitatory—inhibitory equilibrium, while multiway exchanges among
mirror pairs converge toward overall error minimization and mutual organization.
The primary organization of this type is evident in the spinal cord. During cortical
embryogenesis, connections develop in topographies interpretable as mirror
reflections with broken symmetry, aligning along the radial and circumferential
axes of cortical growth, as described by the Structural Model, and subsequently
manifest at the millimetric scale throughout the cortex. The proposed framework
integrates a diverse range of experimental data and provides an explanatory
basis for how generative models with agency can emerge through both species
evolution and individual learning.
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agency, free energy principle, predictive error minimization, cortical embryogenesis,
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1 Introduction

This study reviews the authors’ earlier work on cortical dynamics and self-organization
in cerebral embryogenesis in the context of current controversy about the utility of the free
energy principle and the importance of prediction error minimization in brain function.

The free energy principle, with its corollary, prediction error minimization,
has become influential throughout the brain sciences over the last two decades
as a significant modification of earlier top-down vs. bottom-up concepts of brain
organization. It generalizes formal parallels between laws of nature, including least action,
thermodynamics, and Bayesian inference (e.g., Friston, 2002, 2005, 2008, 2010a,b; Hohwy,
2016; Ramstead et al., 2022), and depends upon the idea that all systems separated by a
boundary from a wider environment evolve until they have minimized their perturbation
by that environment. This implies error minimization across the boundary, as, in the limit,
equal and opposite signals are continuously exchanged, resulting in maximum mutual
information. Such a boundary is termed a Markov blanket by Friston (Kirchhoff et al.,
2018; Friston et al., 2017; Tschacher and Haken, 2007; Fields and Levin, 2019; Kiebel and
Friston, 2011; Levin, 2019; Hohwy, 2016).
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Applying the principle to the central nervous system (CNS), it
is supposed that an internal representation of the self, acting within
the world, arises in the higher centers of the brain as a generative
model with the capacity to bring about novel consequences—that
is, with the capacity for agency.

Due to the principle’s generality and unity, and its implications
for natural general intelligence, its importance for the future
development of artificial general intelligence is apparent. However,
it also faces strong criticism. An early criticism was that of the
dark room (Friston et al., 2012; Clarke, 2013; Sun and Firestone,
2020)—that escape from stimulus alone would minimize error.
Recent criticisms (Kwisthout and van Rooij, 2020; Mangalam,
2025) assert that the principle is metaphoric and not testable; that
the computation of Bayesian priors and posteriors could not be
achieved within hierarchical architectures; that intermediate values
of these measures could not be stored; and that assumptions made
about the statistical properties of pulses and electrocortical waves
are unphysiological.

These criticisms conflate high-level cognitive abstractions with
basic physiological mechanisms. They would be alleviated if it were
shown that neurons minimize prediction error in interactions at
all scales, so they are not bound solely by hierarchical interactions;
that the mechanisms are robust with respect to the statistical
characteristics of pulse and wave generation; and that such neural
mechanisms tend to evolve toward agency. What follows is a
theoretical account of neuroanatomical order that meets these
requirements and could be further tested in connectomics.

2 The neural field

We begin with definitions of minimal network characteristics
(Wright and Bourke, 2024a,b) necessary to justify the simulations
upon which our arguments rely. The network properties overlap
with those of classical artificial networks (Hopfield, 1982;
Rumelhart et al., 1986; Xie and Seung, 2003), but are not identical.
When stochastic approximations are assumed, it does not imply
that Gaussian or linear properties are necessary.

2.1 Presynaptic flux and Hebbian plasticity

The n unidirectional flows of presynaptic flux in a neural field
can be represented as n elements of a square matrix ® (), with
elements ¢;;, each representing the presynaptic flux received at the
neuron at position i from the neuron at position j, over all pathways.

Q1) =GQ(®) (1

G (t) is a square matrix operator of presynaptic gains and axo-
dendritic conduction times, transforming Q (t), a vector of action
potential pulse rates of all neurons, so that in the steady state

@ij (t + |i;j|) = *eiigijpiQ; () 2

Qj is the pulse rate of the j — th neuron, v is the speed of signal

spread, and @ is the delay from pulse generation to arrival of

peak pulse density at pre-synapses on the i — th neuron, averaged
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over all routes. Synaptic gains are on three time-scales, &j, gijj, 0ij—
the transient synaptic efficacy, the slow dynamic synaptic gain, and
the structural synapse gains, respectively, with synaptic flux either
excitatory or inhibitory.

It is assumed that gains are competitive on all three time-scales
(Miller, 1996; Okamoto and Ichikawa, 2000) and consistent with
the unification of fast and slow synaptic learning rules proposed
by Izhikevich and Desai (2003), combining short-term plasticity
(STP) and short-term depression (STD) with the slower and more
permanent Bienenstock-Cooper-Monro (BCM) rule. Thus, with
ongoing network activity, the rapid and transient synaptic efficacies
in response to afferent pulses lead to increasing dynamic and
structural gains as the time average of synaptic flux.

2.2 Dendritic summation and pulse
generation

Transformations of synaptic flux leading to pulse generation
can be represented as

Vi) =38t —1)" 2 ¢ () 3)

8 (t — 1) is a dendritic delay function convolving the aggregate
presynaptic flux to generate the dendritic potential, V;(¢), and
may describe any form of leaky integration. The large numbers
of independent non-linear summations at the dendritic membrane
are assumed to be stochastically smoothed to an additive
approximation, where Q; (¢) is the efferent pulse rate of the i —
th neuron,

Qi (t) =fo (Vi (1) (4)

and fy is any sigmoid-like function operating as a probabilistic
threshold for action potential generation.
2.3 Anti-Hebbian plasticity and steady state

Anti-Hebbian
homeostatic metabolic pathways, acts to normalize excitatory

synaptic  plasticity, reflecting multiple
and inhibitory synaptic gains, leaving the relative strengths of
Hebbian influences unchanged (Keck et al., 2017). A steady state
is maintained in which excitatory and inhibitory flux remain
balanced so that where Y ¢, is the total excitatory presynaptic flux

and ) _ g; is the total inhibitory presynaptic flux, then
>, — — > @i — constancy (5)

This steady-state assumption applies to summed afferent
pulses reaching individual neurons as well as the population
average; however, the constancy may vary with the level of
network activation.

2.4 Goals of this model

From these assumptions about network properties, we must
demonstrate how the external environmental field, E (x, .2, t),
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where x,y,z,t are spatial and temporal coordinates, is mapped
onto the developed form of the synaptic connections. That is,
we must explain how synapses that converge to a static state can
represent sequences of spatiotemporal sensory and motor images.
The electrodynamics of synchronous oscillation provide a starting
point for understanding.

3 Synchrony

3.1 Mechanism of synchrony

Synchronous oscillatory firing (Singer, 1993) of cortical
neurons is prominent in the 40 Hz (gamma) range but is apparent
over all frequencies. Possible mechanisms for its generation
are multiple, as it may arise from identical inputs to separate
neurons or through non-linear phase-locking of neurons at high
or pathological levels of excitation. However, it can be shown
that synchrony emerges in any network with zero-mean summing
junctions interposed between elements, even when the network is
driven by temporally and spatially diffuse white noise. Principal
component spatial eigenmode analysis of simulations of the
neural field reveals that the first principal component of the
field exhibits widespread zero-lag synchrony with relatively low
spatial damping and is the response to the even components of
the inputs driving the field. The second principal component is
characterized by low-magnitude, asynchronous, highly spatially
damped, and rapidly dissipated activity and is the response to
the odd components of the inputs (Chapman et al., 2002). These
properties can account for the bulk of findings on synchronous
oscillation in the brain (Wright et al, 2000). Closely related
simulations that also account for other EEG properties, including
the background spectrum and major cerebral rhythms (Wright
and Liley, 1995, 1996; Robinson et al., 1997, 2001; Rennie et al,,
2000, 2002), incorporate prominent zero-lag synchrony as an
inherent property.

These numerical findings can be simply explained. Oscillation
arises from the to-and-fro exchange of signals between excitatory
neurons and local inhibitory neurons. Synchrony is then generated
by summation of synaptic afferents at dendritic membranes, as
in Equation 3, with a set level as in Equation 5. Synaptic pulse
trains that arrive in opposite phase with respect to the sustained
mean level cancel in summation, while those in phase summate
positively—thus out-of-phase signals are dissipative, whereas in-
phase pulses, when exchanged through the neural population,
converge to coordinated synchrony at all frequencies. This applies
to the summation of both excitatory and inhibitory synaptic fluxes
at the membrane, since the inhibitory flux is effectively of the
opposite phase to the excitatory flux. This argument is independent
of the details of pulse generation and exchange statistics, as only the
interactions of odd and even signal components are relevant.

Although point, limit cycle, or chaotic attractor dynamics may
appear transiently in single neurons, this model is not restricted
to such dynamics. A stochastic process results in synchrony as a
ground state of electrocortical activity, consistent with observations
that electrocortical waves exhibit energy equipartition and minimal
free energy (Wright, 1989).
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3.2 Synchrony as prototypical predictive
error minimization

Since the exchange of signals between any two neurons tends
to converge toward their synchronous firing, this is a prototypical
example of mutual predictive error minimization leading to the
maximization of mutual information, I. Roughly measured in
linear approximation,

1= —% log, (1 — 72) (6)

where r is the correlation coefficient of their synaptic
flux exchange.

From this simple form of prediction error minimization
between individual cells, the formation of geometrically ordered
multiway exchanges between cell populations can be inferred,
as follows.

4 The generation of mirror pairs

4.1 Minimization of free energy and flux
equilibrium

Hebbian learning will lead to a fall in the variational free energy
of presynaptic flux, F, as cross-connections form.

F=A—-C—0 (7)

where A is the total presynaptic flux autocorrelation, and C is
the total presynaptic flux cross-correlation.

A further assumption is made here—that although the
asymptotic limit cannot be reached in life, it will be sufficiently and
continuously approached despite perturbation, to such a degree
that connections will emerge observably close to those expected at
the limit.

At the limit at which F = 0 (or approximately, if the limit is
sufficiently closely approached), in the exchange of synaptic fluxes
@ij and @j;, over all synaptic routes between cells at any positions
i and j, and time-lag 7, the sum of their autocorrelation terms
becomes equal to the sum of their cross-correlations:

@ij (1) @ij (t — T) + ;i () @ji (t — T) = @i () @ji (t — )
+oi O @it —1)  (8)

According to the free energy principle, the synaptic fluxes now
represent the spatial and temporal associations in the network’
inputs, and their probability distributions satisfy Bayes’ theorem.

Absolute that energy approach
equipartition: ¢;; (f) — @;j (t — 1) — @ji (t) — ;i (t — 7). This
condition is met when pairs of excitatory cells, or pairs of inhibitory

equilibrium  requires

cells, exchange equal and opposite flux at zero lag (t = 0), and
when pairs of cells, one inhibitory, the other excitatory, exchange
flux by firing with lag 7 = @ This is synchronous oscillation, in
which excitatory or inhibitory pairs fire in phase at zero lag, and
excitatory and inhibitory pairs fire in antiphase at half the period of
oscillation. The ground state of universal synchrony is approached

in the face of external perturbations.
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Equation 8 admits many solutions in which free energy is zero,
but energy is not equipartitioned. These cases represent forces
perturbing the system and external inputs operating upon the
neural network and are analogous to pdV forces in equilibrium
thermodynamics, where free energy is equivalent to the Gibbs
free energy.

4.2 Prediction error minimization and free
energy gradient

Free energy gradients must vanish as the free energy is
minimized—but since the system is under continuing input
perturbations, then, where A®™ is a vector representing flux
induced by the externally imposed signals, there must arise an
oppositely directed vector A®~. In effect, the neural network
predicts and neutralizes its inputs with minimal error, so

2
AP () — AP (1) > 0; £ — 0, and TE - —ve  (9)

Since all fluctuations are minimized, synaptic exchanges in
zero-lag synchrony are maximized to the extent possible in the face
of ongoing perturbation.

4.3 The emergence of mirror pair systems
and excitatory/inhibitory balance

Fields of synchrony form the spatial eigenmodes of the
network. Opposite and equal compensating asymmetric exchanges
cannot be within the same eigenmode system, as this would
result in a frozen steady state in which a representation of input
time variations would not be possible (This would be the dark
room outcome.). Therefore, the minimization of prediction errors
requires that spatial eigenmodes develop in paired systems with
mirror reversal, each with time-varying flux exchanges between
eigenmodes oppositely directed to those in the mirror partner.

Paired mirror systems must also be able to maintain overall
excitatory/inhibitory balance, as required by Equation 5. This can
be provided by the collision of traveling waves at the line of
interaction of the mirror pair, modulated by the adaptations of
anti-Hebbian plasticity, and mediated by cross-couplings of all
excitatory/inhibitory combinations, as diagrammed in Wright and
Bourke (2024a,b). The line of collision is acting as a Markov
blanket, with prediction errors in exchanges over the blanket
minimized until equilibrium is reached. The paired structure
conforms to the good regulator theorem (Conant and Ashby, 1970),
which states that every good regulator must be a good model of
the system it is controlling. Thus, each of the paired mirrors is a
good regulator of the other. When the mirror pair arrangement
is generalized to the multiway interactions of many systems, each
approaching approximate mirror symmetry with its neighbors,
complicated patterns of mutual regulation and distributed systems
of partial generative models can arise, influencing one another.

Figure 1 (left) illustrates a system composed of a pair of
mirror-symmetric, coupled spatial eigenmodes, each generating
oppositely directed, colliding, traveling waves. The diagram shows
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FIGURE 1

(Left) The topology of neural field interactions meeting
requirements for minimization of free energy, minimization of
prediction errors, and maintenance of excitatory/inhibitory balance.
Within each of a pair of mirror-symmetric systems, spatial
eigenmodes (represented arbitrarily as yin-yang figures) interact via
excitatory and inhibitory cross-couplings (solid and dashed black
lines), generating oppositely directed traveling waves that collide at
the double-dashed line of symmetry, forming a Markov blanket.
(Right) The archetypal order of the spinal cord; segmental mirror
images; left/right bilaterally symmetric mirror images. Central gray
matter is shown in red for somatic and visceral motor outputs and in
blue for somatic and visceral sensory inputs. The surrounding
system is composed of long neuronal tracts that convey signals over
multiple spinal segments to and from the higher centers.

the topology of the connections and flux exchanges—not a
specific topography. The mirror-twin eigenmode systems might be
separated by some distance, or their cell soma positions might be
interdigitated.

4.4 Signal exchanges across Markov
blankets

It is emphasized that a Markov blanket is a mechanism for
prediction error minimization, but it is not essential that free
energy reach the zero limit. Perturbation of the system short of
the limit will generate exchanges of signals across the blanket,
enabling sequences of activity to be coordinated between mirror
pairs, although exchanges across the blanket boundary maintaining
excitatory/inhibitory balance result always in convergence toward
signal mean and zero-lag synchrony on either side. This requires
exchanges that may be mutually excitatory, mutually inhibitory, or
involve excitatory/inhibitory cancellation. Exchanges may be out of
phase and therefore dissipative, or in phase and conservative. Thus,
perturbations of signals across the blankets can be information-
rich, and multiway exchanges between assemblies of mirror pairs
could organize sensorimotor sequences. This can be observed in
the simplest form in the spinal cord.
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4.5 A prototypical example: the spinal cord

All neural development depends upon cell differentiation
in stages, from early precursors into populations of cells with
characteristic differences in axonal and dendritic trees and paths
of mobilization into anatomical order. Mirror symmetries are
apparent from early in the evolution of vertebrates. Figure 1 (right)
shows cross-sections of a generic vertebrate spinal cord, introduced
here as a harbinger of the development of higher centers.

In Figure 1, right, the dorsal horns of gray matter, colored blue,
mark the sites of sensory inputs to each spinal segment. The ventral
horns, colored red, are the sites of motor commands sent out via the
spinal nerves. The dorsal and ventral horns on each side in a single
spinal segment can be regarded as forming a system of coupled
spatial eigenmodes. Exchanges across each of the Markov blankets
could then maximize the mutual information between sensory and
motor signals in the left and right parts of the body, as well as
between higher and lower spinal levels. Thus, elementary sensory
experiences from within and without the organism, as well as motor
expression, would be integrated in a generative model of self-
in-the-world, in the simplest sense. Perturbations crossing these
boundaries would enable the organization of activity in temporal
sequences. This provides a principled basis for the well-studied
mechanisms that coordinate locomotion in all creatures with a
segmental nervous system, from worms to humans (Danner et al.,
2016).

This symmetry could not be generated by the above
hypothetical neural mechanisms alone. The structure must be
genetically determined and originally selected in evolution by
mechanical demands for articulation and the development of
segmental reflexes, but it offers a starting point for the evolution
of neural mirror symmetries in further development. It is well-
established that the organization of the spinal cord extends into
the brainstem and subcortex, preserving bilateral symmetry and the
extension of structures related to the dorsal and ventral horns of
the spinal cord. We assume without proof that the later evolved
developments within the subcortical systems could themselves
be decomposed into mirror pairs. Instead, we will show how
the formation of mirror pairs is apparent in the formation of
connections throughout the neocortex.

5 Embryogenesis

5.1 Selection of neurons and synapses early
in the developing brain

Synchronous firing emerges early in neuronal development,
coinciding with the establishment of small-world connectivity
(Downes et al., 2012; Markov et al.,, 2011; Vergara et al., 2019;
Bassett and Bullmore, 2006). Concurrent apoptosis (Hollville et al.,
2019) favors cells that fire with zero-lag synchrony (Heck et al,
2008; Sang et al., 2021), apparently because synchrony promotes
high metabolic turnover and resistance to cell suicide (Vergara
et al,, 2019). Initially, random action potential pulses can generate
polysynaptic flows, within which bidirectional monosynaptic
couplings may form between cells through symmetric exchanges.
Arising first as rostral extensions of the early embryonic spinal
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cord and brainstem, brain cell precursors that will give rise to the
limbic system radiate outward to form the neocortex, in accordance
with the Structural Model. As this expansion continues, cortical
layers develop in depth, establishing pathways of signal flow and
increasingly detailed local patterns of connectivity.

5.2 The structural model

The structural model provides an account of the embryogenesis
of the neocortex (Barbas, 1986; Barbas and Rempel-Clower, 1997;
Barbas, 2015; Garcia-Cabezas et al., 2019, 2020; Sancha-Velasco
et al,, 2023; Uceda-Heras et al.,, 2024). Radial lines of cells grow
outwards (Sanides, 1962, 1964, 1970) from two primary cell groups
related to the hippocampus and olfactory allocortices, respectively,
expanding in concentric rings. Cellular and molecular features
vary systematically along the radial cortical gradient of laminar
complexity (Sancha-Velasco et al., 2023; Garcia-Cabezas et al,
2017; Puelles et al., 2019, 2024; Rakic, 2002, 2007; Barbas and
Garcia-Cabezas, 2016; Barbas and Garcia-Carbezas, 2015; Garcia-
Cabezas et al., 2019, 2020).

As differentiation proceeds, cell connectivity also undergoes
modification under the distance rule (Markov et al., 2011; Vezoli
et al,, 2021), favoring cross-connections via the shortest and most
locally dense pathways (Aparicio-Rodriguez and Garcia-Cabezas,
2023), thereby imposing circumferential connections among the
radial lines. The radial lines and circumferential rings become
folded into the neocortex, and at the most peripheral limit of
development, they include the neurons in the primary sensory and
motor cortices.

Along the radial lines of development, centrifugal signals from
the limbic system interact with centripetal signals from the special
sensory and motor cortex, bypassing each other between cortical
layers in a counterflow between a hub-like center vs. the primary
cortical areas that establish direct sensory and motor interactions
with the environment (Adams et al., 2013). The counterflow is
organized according to layers in the cortical depth, with layer
complexity increasing from the limbic to the special sensory cortex.
The flow outward from the limbic system passes from layers 5 and
6 centrally to layers 5 and 6 and layers 2 and 3 more peripherally.
Meanwhile, the counterflow in layer 4, generated by peripheral
inputs, interacts with neurons in layers 2 and 3 and is then relayed
further via layer 4. Circumferential connections connect layers all-
to-all.

The structural model reiterates ancestral neocortical evolution
(citations above, Steffen et al., 2022), and the radial hierarchical
order can be regarded as an ultimate extension of spinal segmental
order. Radial development provides a hierarchical order for
minimizing theoretical prediction error (Shipp, 2007; Shipp and
Friston, 2022; Bastos et al., 2012, 2020).

5.3 Columns and patches at millimetric
scale

Further order develops at the millimetric scale in the upper
layers, where the superficial patch system (Muir et al., 2011; Muir

frontiersin.org


https://doi.org/10.3389/fnsys.2025.1683448
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org

Wright and Bourke

and Douglas, 2011; Martin et al., 2014), made up of patches of cells
that make lateral connections, skipping from patch to neighboring
patches in several steps, forms gridworks believed to distribute
information between all intracortical locales. Some parts of the
cortex are organized into zones (Molnar, 2020; Horton and Adams,
2005), consisting of short-axon neurons surrounded by groups of
superficial patch cells, which create variably resolved, often diffuse,
macrocolumns. Within these macrocolumns, individual cells are
organized according to their stimulus preferences (e.g., Obermayer
and Blasdel, 1993). Similar neuron response preferences can be
detected whether or not columns are present (Meng et al., 2012),
so the presence or absence of columnar structure appears to reflect
the degree to which the patch system and intervening shorter axon
cells form discrete or merging systems.

Organized response columns in animals, which are clearly
defined and have relatively long gestation periods, such as rhesus
monkeys, appear before birth (Wiesel and Hubel, 1974). Thus, their
formation does not depend upon organized visual inputs. Yet, when
deprived of organized visual inputs during the post-natal period,
the response architecture collapses (Blakemore and Van Sluyters,
1975; Sherk and Stryker, 1976).

This embryological order can be interpreted as the formation
of mirror pairs in a number of distinct topologies, initially driven
antenatally by random pulsation and subsequently responding
post-natally to ordered inputs.

6 All mirrors

6.1 Whole brain and interareal
approximations to mirror symmetries

In gross anatomy, approximate left/right mirror symmetry
extends from the spinal cord to the cerebral hemispheres.
Approximate mirror symmetries are also apparent throughout the
cerebral white matter, since interareal cortico-cortical connections
form U-shaped projections, each area tending to mirror others to
which it projects reciprocally.

6.2 Hierarchical counterflows as mirror
symmetry

The lines of counterflow in the structural model, whereby
interactions between signal streams in a hierarchical order occur
in cortical layers 3 and 4, can be construed as a mirror reflection
of a mirror pair, with the layer 3/4 interaction interpreted as
an extended Markov blanket. This aligns with the influential
theory of prediction error minimization proposed by Bastos et al.
(2012, 2020), in which prediction errors are minimized through
excitatory/inhibitory interactions in counterflows.

We suggest that the Bastos et al. models are a special case of a
more general and ubiquitous process at all scales—and particularly
at millimetric scales—in which paired, mirror-symmetric cells
and synaptic arrangements develop, thereby greatly increasing the
degrees of freedom for signal interchange and facilitating overall
minimization of prediction error.
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6.3 Simulations of the generation of mirror
maps at mesoscale

Detailed accounts of how the selection of developing neurons
for maximum synchrony by apoptosis can shape anatomical
ordering and the tuning of individual cortical neurons are given in
Wright and Bourke (2013, 2016, 2022, 2023, 2024a,b); Wright et al.
(2014).

Simulations (Wright and Bourke, 2013, 2016) were devised
to show that continuity between columnar and non-columnar
cortex could be explained when total synchrony was maximized
and axonal lengths were minimized according to the rules of
ultra-small world connectivity. We employed a simple force
equilibrium algorithm that leveraged the unit-dimension analogy
between mechanical force and synaptic flow, considering
the axonal lengths of two populations—specifically, those
with long vs. short axons. With an emphasis on small-world
cell organization alone, the pattern of cell connections was
diffuse. With emphasis on synchrony maximization alone, short
axon cells formed clusters surrounded by pools of the long
axon cells, the latter in systems with hexagonal, square, or
irregular tiling.

With both optimization criteria considered concurrently,
simulation outcomes varied depending on the absolute and
relative lengths of the short vs. the long axons. Where all
axonal lengths were shorter, and when the long axon lengths
were closer to those of the short axons, then a more diffuse
small-world order predominated. With increasing difference of
relative axonal lengths, a more clearly columnar structure emerged.
This accounted for the variation in columnar and non-columnar
appearances, as well as the ordering of patch cells, with the
implication that a single modular system is common throughout,
and modular interpenetration in apparently non-columnar areas
is made possible by the sparsity of connectivity throughout
the cortex.

Using the patterns of cell body positions generated in the
simulations, we next reconstructed the patterns of symmetric
bidirectional monosynaptic connections that should emerge as
synchrony is maximized in the growing network. These matched
the distribution of synapses formed by superficial patch cells,
with a neighborhood arrangement of cortical columns in mirror
symmetry to each neighbor. The closest approximation to mirror
symmetry between columns required patch cells in square patterns,
with broken symmetry where patch connections were in a
hexagonal array.

The requirement to maximize synchrony with bidirectionally
symmetric connections in all cases implied a rather strange but
necessary arrangement in the connection between patch cells and
the cells within each column. The interpenetration of the sparse
networks implied that maximization of synchrony among the
short axon cells required their linkage in closed loops, while the
connections made to the short axon cells by the patch cells would
be constrained within arcs radiating from columnar centers. The
upshot was that projection from the larger patch cell scale to the
shorter axon cell scale would be similar to the projection of a
Euclidean plane to a Mdbius strip in a Riemann projection. We
referred to this as a projection from a “global” to a “local map” scale,
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which could be represented as follows:

2
P < pwherep = {i«/—lkw (10)

Ppol * PO}

where P is a position at the global scale of the patch system
expressed as a complex number, and p is a corresponding position
within one of the local maps. Curly brackets indicate that there is
(P—po)’
[P=pol
doubling of the angle in the projection from P to p, ~/—1k defines
rotation by 90 degrees, and the scale of the projection from global

describes the

a set of such maps tiling the cortical surface.

to local scales. Chirality is indicated as £, and py is the center of
a short-axon cell cluster. This implies that a mirroring relationship
is created between scales, as well as mirror pairs being generated
between adjacent column-like systems throughout the cortex.

6.4 Explanatory power of the mesoscale
mirror pair model

The above model offers a unitary explanation of the following
experimental observations:

Columnar vs. non-columnar variation (Wright and Bourke,
2016).

The antenatal development of retinotopic maps and their
post-natal loss with deprivation of visual experience (Wright
and Bourke, 2013).

Retinotopic response maps in cortical area V1—Orientation
Preference (OP) singularities, linear zones, and saddle points.
A Mobius-like internal configuration within a column
accounts for the organization of OP from 0 to 180 degrees over
the 360 degrees around an OP singularity. Linear zones and
saddle points of OP are accounted for by mirror-symmetric
reversals with some broken symmetry at columnar boundaries
(Wright and Bourke, 2013, 2016).

Ocular dominance (OD) columns in a square array (Wright
and Bourke, 2024a).

“Like to like” patch cell connections—i.e., the preferential
connections of patch cells to columnar cells with a common
OP (Wright and Bourke, 2013, 2024b).

The numerical relationship TFP = object velocity x SFP
between preferred spatial frequency (SFP) and preferred
temporal frequency (TFP) in individual cortical neurons
(Wright and Bourke, 2022).

The differential distribution of SFP and TFP in relation to OP
(Wright and Bourke, 2022).

OP variation in response to moving line stimuli of given
orientation and varied speed, angle of attack, and length
(Wright and Bourke, 2013)—as opposed to fixed OP selection
on the input pathway alone.

of the
somatosensory cortex showing that receptor fields for

Recordings made by vertical penetrations
cells exhibit continuities of the fields as the recording
electrode is advanced, as well as sudden breaks and reversals
of continuity—consistent with the organization of local cell
connections in a Mobius-like configuration that spirals within

the cortical layers (Wright et al., 2014).
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6.5 Orderly organization of mirror pairs

As development unfolds, initially highly asymmetric signal
exchanges occur between layers 2, 3, and 4 in radial development
and between all layers in circumferential development. These
exchanges would proceed imperfectly, with later and local self-
organization further minimizing total free energy in a manner
similar to the formation of eddies in turbulent flow.

Figure 2 shows the stages of the proposed development of the
mirror pair organization.

In Figure 2a, the central long dashed arrow indicates the
orientation of the neuraxis, with the three sections of the spinal
cord representing the cord and brain stem. The fine dashed
radial lines indicate the direction of embryonic development from
limbic origins toward special cortical sensory/motor areas. Lateral
intra-cortical and cortico-cortical connections (gray arrows) add
circumferential connectivity.

The radial development in depth of the cortical layers of the
ventral and dorsal divisions, respectively, is shown on the left
and right hand sides from center. Laterally projecting red arrows
indicate cortico-cortical connections projecting from higher in
the sensory hierarchy to lower, and diagonal blue arrows mark
the counterflow of signals from lower to higher in the hierarchy.
Small blue vertical arrows mark the onward projections of axons
preferentially directed toward the surface from layer 4 to layers 2
and 3, and small red vertical arrows mark counterflows of traffic
from layers 2 and 3. Interaction between the counterflows at layers
2, 3, and 4 is characterized as a Markov blanket, indicated by the
double-dashed lines.

Figure 2b represents the development of interareal and
U-shaped
connections, with approximate mirror symmetry. Superficial

interhemispheric ~ projection via cortico-cortical
patch cells and columnar cells are shown embedded in the cortical
sheets (An area on the lower left is shown with overlapping patch
connections as a reminder that apparent columnar order can be
absent without loss of modular order).

Figure 2¢ shows the arrangement of superficial patch cells on
the cortical surface, forming a communication network between
column-like groups of shorter axon excitatory cells that connect
in an interpenetrating meshwork, akin to systems of interlocked
Mobius strips. Projections from the patch cells to the columns thus
form a mirroring between scales at millimetric distances.

Figure 2d illustrates how the maximization of synchrony
between adjacent columns necessitates mirrored arrays in
neighborhoods, with a degree of broken symmetry imposed by the
roughly hexagonal tiling of the patch cell network.

Figure 2e, shown in cortical depth as in Figure 2a, shows how
the mirror arrangement would develop as lateral connectivity in
layers 2/3 and 5/6, respectively.

7 Dimensions and spatiotemporal
images

7.1 Dimensional consistency in synaptic
storage of a generative model

Sensory and motor events can be regarded as images in four-
dimensional space-time, arriving in the cortex as image projections
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FIGURE 2

Mirrored representations in approximate developmental sequence. Double black dashed lines indicate lines of mirror symmetry and associated
Markov blankets. Red, blue, and gray arrows indicate presynaptic flow along the radial and circumferential lines of development. (a) Development
along the radial lines of the structural model (see text) indicates the interaction of counterflows at intervening Markov blankets. (b) Circumferential
development between cortical areas. (c) Superficial patch cells, depicted as dark patches, form a communication network that generates local maps
in a Mobius strip-like configuration, producing a mirroring between scales at the mesoscale. (d) Adjacent local maps, with varying degrees of overlap,
interact with each other across homologous mapping positions within Markov blankets. (e) Along the lines of radial development, mirror pairs can
form in layers 2/3 and layers 5/6.
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to a two-dimensional surface. Specific images in a time-varying
three-dimensional world require an object scale/rotation frame
of three dimensions plus a position reference frame of three
dimensions. The inclusion of information on image velocities then
requires a translation within both of these frames. Therefore, when
compressed to an effectively flat surface and stored as static cortical
synaptic connections, image representations must be defined by
sets of twelve points, and these sets must be laid out within an
equivalent of a four-dimensional frame—arising as follows.

Where O is a pattern of activity at the scale of the patch network,
and o is the projected image to any given column-like short-axon
system, then, according to mapping (10)

O (P,t) < [o (i(p—po)z, t— M)} (11)

Representation of O(P,t) has been dispersed across a set
of synaptic connections that form a four-dimensional reference
framework, with positions defined by the complex numbers, P
(global map) and p — po (within each of the set of local maps).
Within this frame, associations within sets of twelve neurons can
define spatiotemporal images.

Because (10) and (11) are invertible 1:1 maps, and since
projections at a large scale are topographically ordered and receive
and project to primary sensory and motor areas as topographic 1:1
projections, generative models developed at the mesoscale would
maintain topological consistency.

7.2 Broken symmetry and sequences of
spatiotemporal images

Organizing into mirror pairs would minimize, but not
eliminate, broken symmetry. As the gradient of free energy
diminishes, in contrast to the idealization of Equation 9, with a
degree of asymmetry, an unstable, rather than a stable, fixed point
would be approached. i.e.,

asFand%HOfoe—i—ve (12)

This may be favorable rather than fatal in functionality.
Spatiotemporal images must be stored in sequences much longer
than the timescale of intracortical conduction. Longer sequences
require cortical areas to activate each other sequentially, creating
cognitive order. Therefore, asymmetry would enable the switching
and manipulation of spatiotemporal images on longer time scales.

8 The evolution of agency

Given the above properties, it is possible to argue that agency
can emerge progressively in the evolutionary sequence. The caudal-
to-rostral evolutionary sequence can be regarded as a progression
from hard-wired to soft-wired connectivity, as is apparent in
the progression from lower plasticity to higher plasticity seen
in enzyme expression in the radial lines of the structural model
(Garcia-Cabezas et al., 2017, 2019; Gomez et al., 2019; Sancha-
Velasco et al., 2023). Concurrently, the expansion of mirror pairs
in circumferential order provides for parallel and feedback relations

Frontiers in Systems Neuroscience

10.3389/fnsys.2025.1683448

with higher degrees of freedom than the hierarchical order alone—
a systematic variant of sleep/waking network optimization (Hinton
et al,, 1995, 2006), in which network connectivity evolves toward
optimum in the partially randomized dreaming phase.

We can compare the neocortex, which is considered soft-wired,
vs. the limbic, more caudal components, and apply the Nyquist and
Shannon relations to measure the channel capacities of both parts
of the CNS. The separation into neocortical and limbic systems, as
a division between soft- and hard-wired systems, is a convenience,
but the argument is general and applicable at various stages as
the number of neurons increases in a caudal-to-rostral sequence
throughout evolution.

Treating each of n synaptic fluxes as binary valued for
simplicity, the channel capacity of the entire CNS network, D,
measured in bits, is as follows:

D=nlog, (1+ %) (13)

where C and A are the total cross-correlation and
autocorrelations of synaptic flux (Equation 7). % is equivalent to
a signal/noise ratio, and as the asymptotic limit is approached,
C — A and therefore D — n.

If the neocortical component is composed of 7,,fluxes and
a limbic and subcortical component of #y;,,;, fluxes, then there
are 2" /2 distinguishable neocortical states in mirror pairs and
2Mimb /2 limbic states.

Survival

that conditions

incompatible with any of the strongly inherited limbic states

requires an organism avoid
that constrain and bind its behavior. However, if 1,00 > #jimp»
there are 2"weo="imb possible neocortical states available for each
limbic state. These neocortical states arise internally through
couplings that minimize synaptic free energy. Consequently, as an
organism interacts with its environment, various combinations
of neocortical and limbic states are generated, and some of
the internal neocortical states, by linking to limbic states, gain
behavioral expression. The expanded range of states enables the
emergence of novel responses that can be tested for their survival
potential—either incurring risk or achieving unprecedented
success—and, if successful, become incorporated into the
organism’s behavioral repertoire. This mechanism may underlie
the phylogenetic evolution of agency. A parallel process can be
proposed for individual development.

9 Conclusion

9.1 Summing up

We have argued that prediction error minimization is built into
the signal exchanges between every neuron in the brain and every
other, so that cortical neural networks tend to always maximize
synchronous oscillation in the face of ongoing perturbations.
Flexible evolution toward this elementary equilibrium at fast,
intermediate, and slow time scales of synaptic consolidation
would impose the formation of neuronal assemblies in mirror-
pair topologies at micro-, meso-, and macroscales, and between
scales. This, in turn, allows a four-dimensional generative model
to emerge, mapping the four-dimensional interactions of a self in
the world.
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We have extended the argument to demonstrate that it
is consistent with the evolution of the brain being shaped
by apoptotic selection interacting with genetic sequences and
chemical organizers and, by allowing the addition of extra and
flexible information-processing capacity, to progression toward
increasing agency.

This theoretical account, if valid, goes some way to countering
strong criticisms that have been made of the Bayesian brain
and the free energy principle. We have argued that information
management is not limited to hierarchical processing, and
the primary mechanism of synchrony is robust to the effects
of non-linearities and statistical variations that deviate from
Gaussian ideals.

9.2 Comparisons and further
considerations

Our proposal builds upon and extends earlier concepts of brain
function and organization.

We have earlier mentioned adherence to the “good regulator
theorem,” which requires control systems to model what is
controlled and allows for interacting and collaborative control
subsystems. The classical Hebbian concept of phase sequences and
cell assemblies (Hebb, 1949) could be expressed in terms of coupled
spatial eigenmodes. The same notion of self-organization into
dynamic groups of neurons with partial computational autonomy,
bounded by surrounding Markov blankets, is expressed in the
Neuronal Packet Hypothesis (Yufik and Friston, 2016; Yufik, 2019).
The present view posits that minimization of prediction error is a
universal principle in the interactions of any pair of neurons, as well
as in emergent groups with mirror symmetry.

The development of this skeletal concept of neural function
into a more comprehensive model of brain function is beyond
the scope of this paper; however, areas of interest include, firstly,
the interactions between limbic/neocortical systems. Functional
correspondences between the structural model and alerting,
surprise, habituation, and sleep have been analyzed by Tucker et al.
(2022), Tucker and Luu (2021, 2023), Luu and Tucker (2023),
Luu et al. (2024), and Tucker et al. (2025). The activation and
regulatory roles of limbic components, positioned as they are at the
roots of neocortical development and therefore at the crossroads
of signal control, offer a guide to the way the old brain and new
brain collaborate in the development toward increasing agency.
By minimizing the risk of fatal outcomes, they would influence
overall “policy” and, in maneuvering toward optimum adjustment
of limbic and neocortical components, would be executing active
inference (Ramstead et al., 2021; Kavi et al., 2025). Moreover, the
role of sleep proposed in these models draws upon the resemblance
to Hinton’s “dreaming” networks (earlier cited) and the idea of
self-organization through the maximization of synchrony in the
presence of noise, with noise and high degrees of freedom assisting
movement toward stable basins of attraction. This aligns with the
present model’s essentially steady-state dynamics, characterized by
convergence after perturbation toward maximum synchrony.

Secondly, the interaction of cortical areas, e.g., Yeo networks
(Yeo et al, 2011), requires explanation. High asymmetry in the
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mirror matching of many areas would limit their demarcation via
unstable Markov blankets, not only due to the conformation of
their boundaries and connections, but also to the mismatching
of spatial frequencies resulting from differing fiber ranges for
cells in different areas. This would result in relatively weak
coupling between some cortical areas vs. others. Such relative
isolation between cortical areas might account for cortical
area specializations.

Finally, the idea of the brain being organized into systems
with mirror symmetries invites comparison with the role of mirror
neurons (Bonini et al., 2022). Since mirror neurons show that the
neurons of individuals watching other individuals respond as if the
observer were experiencing the other’s sensations and actions, it
might be thought that the term “mirror” may be merely a linguistic
link. This is not necessarily the case. The internal generation of
mirror neuron activity might itself arise as an imposition upon
mirroring of sensory vs. motor activity within the “host.” If so, then
there is scope for extending the concept of mirroring more widely
than just the individual and the immediate environment, but also
to the world of interpersonal and social interactions.

9.3 Testing against connectomic data

The occurrence of approximate mirror symmetries at
spinal and telencephalic levels is readily apparent, as is the
mirroring between cortical areas by cortico-cortical fibers. To
a first approximation, the existence of mirror symmetries is
uncontroversial—but a critical proposition requiring testing
is that superficial patch connections project to shorter axon
cells within columnar-sized areas in a manner analogous to the
projection of a Euclidean plane onto a Mobius strip. The existence
of such structural order is theoretically required for topographic
consistency in signal exchanges, and the possible existence of
this hypothetical structure is already supported by a range of
indirect observations. Three-dimensional schematic diagrams
reconstructing the expected connectivity are given in Wright and
Bourke (2024b).

It is necessary to show that among the many sparsely connected
neurons within a column, patch cells with somas diametrically
opposite across any column make synaptic connections in arcs
radiating outwards from the central OP singularity and do so
over superimposed arcs outwards from the singularity in surface
view—but, crucially, that opposite patch cells project to closely
interpenetrating, but separate, systems of local cells. This should
apply systematically to all patch cell groups around each singularity
and should hold for each patch cell’s connections to all columns in
the vicinity.

Testing hypotheses in this way faces considerable difficulty,
particularly with data from small animals or in cortical data
obtained from non-columnar cortex. In these cases, the analysis
must deal with the interpenetration of the hypothetical columns, as
well as the intertwining of local connections within each column.
Data for the mouse brain obtained in the MICrONS Project (The
MICrONS Consortium, 2025) have a suitable resolution; however,
since the mouse is small, the connectivity to be analyzed will
face the problem of interpenetration. Mosaic-like connectivity
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surrounding the line of minicolumns is revealed in the MICrONS
mouse data (Miyashita, 2025). This corresponds to the anticipated
interweaving of cells found with vertical electrode penetrations (see
Section 6.4), but explicit consideration has not been given to patch
cells in relation to the interwoven local cells in the connectome data.
An easier test case would require data from the columnar visual
cortex of a large mammal.
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