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Abstract: A theoretical account of development in mesocortical anatomy is derived from the free 
energy principle, operating in a neural field with both Hebbian and anti-Hebbian neural plasticity. 
An elementary structural unit is proposed, in which synaptic connections at mesoscale are arranged 
in paired pa=erns with mirror symmetry. Exchanges of synaptic flux in each pa=ern form coupled 
spatial eigenmodes, and the line of mirror reflection between the paired pa=erns operates as a Mar-
kov blanket, so that prediction errors in exchanges between the pairs are minimized. The theoretical 
analysis is then compared to the outcomes from a biological model of neocortical development, in 
which neuron precursors are selected by apoptosis for cell body and synaptic connections maxim-
izing synchrony and also minimizing axonal length. It is shown that this model results in pa=erns 
of connection with the anticipated mirror symmetries, at micro-, meso- and inter-arial scales, among 
lateral connections, and in cortical depth. This explains the spatial organization and functional sig-
nificance of neuron response preferences, and is compatible with the structural form of both colum-
nar and noncolumnar cortex. Multi-way interactions of mirrored representations can provide a pre-
liminary anatomically realistic model of cortical information processing. 

Keywords free energy principle; active inference; predictive coding; Markov blankets; cortical  
development; cortical mesoanatomy; cortical self-organization  
 

1. Introduction 
This paper argues that the free energy principle can be used to derive a model of 

neocortical self-organization accounting for anatomical structure and function at milli-
metric (mesoanatomical) scale.  

Embryologically the neocortex develops in accord with the “structural model” [1–4]. 
Neuron precursors migrate and differentiate under genetic control along radial pathways 
from archi- and paleocortical precursors, the pathways of migration partly determining 
later functional connections between neocortex and subcortical systems [5,6]. As cellular 
differentiations proceed, cell connectivity also undergoes modification under the distance 
rule [7,8] which describes inter-areal connectivity as an approximation to shortest and 
locally dense pathways–an arrangement facilitating metabolic efficiency and rapid inter-
actions in a “small world”. Actual anatomy is a compromise between the radial versus 
small world arrangements [9]. Ultimately the neocortex becomes a closed extended sheet, 
embracing the subcortical systems from which it has arisen, and organized in depth as a 
six-layered structure of mixed excitatory and inhibitory cells [10]; essentially two layers 
of cell bodies with other layers in which inputs are received and lateral axons–largely 
excitatory-spread over greater distances. Among these laterally spreading axonal connec-
tions the superficial patch system is prominent [11–13]. This is made up of patches of cells 
that make connections skipping from patch to neighbouring patches in several steps, and 
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thus forming gridworks apparently organized to distribute information between cortical 
locales.  

Lateral organization is highly variable at mesoanatomical scale, although much effort 
has been made to systematize the appearances [14]. Some parts of the cortex-notably the 
primary visual cortex of large animals–are organized in a columnar fashion, in which 
zones of short axon neurons are surrounded by groups of superficial patch cells, creating 
macrocolumns, but elsewhere this organization is minimal to apparently absent. Yet the 
superficial patch system is ubiquitous, and is overlapping where columnar organization 
is absent [12]. Within macrocolumns individual cells exhibit organization according to the 
stimulus preferences of cells. Neurons that respond to straight line visual stimuli are or-
ganized about the center of macrocolumns, with orientation preference from 0–180 de-
grees circling the center from 0–360 degrees, creating a singularity [15]. Superficial patch 
cells have a tendency to link cells with common orientation preference in adjacent col-
umns–“like to like” [16]. Cells also show orderly, but more complicated structured pref-
erences for stimulus spatial and temporal frequencies [17]. In noncolumnar cortex neurons 
also show the same types of preference, but with minimal or no apparent order [18].  

Puzzles surround the significance of columnar structure versus its absence, as well 
as the functional significance of the neuron preferences. In animals with columnar visual 
areas, organized orientation preferences are present at birth [19] without having required 
exposure to visual stimuli, yet structure is not sustained in later development if the animal 
is deprived of stimuli of any given orientation–cells with that preference being lost [20]. 
Particular difficulties surround the nature of ocular dominance columns. In some animals 
with binocular vision these are organized in stripes in parts of the visual cortex that re-
ceive inputs from both eyes. Orientation preferences surrounding their singularities form 
mirror reflections between side-by-side columns, and between singularities above and be-
low in a single column [21]–exaggerating a tendency toward mirroring between adjacent 
singularities much less apparent in the monocular cortex. Inputs from both eyes are orga-
nized topographically, as a map of each eye’s visual field, with input from each eye alter-
nating, column by column, with that of the other. This hints strongly of a locus in which 
comparisons can be made between each eye’s input, as required for binocular vision. 
However, not all animals with binocular vision have ocular dominance columns. New 
world owl monkeys provide a particularly difficult instance [22]. They have either very 
poorly ordered, or absent, ocular dominance columns–yet it can be shown that they too 
receive alternating inputs from their eyes as if dominance columns were present. These 
and other findings have led to suggestions that columns are “spandrels”-viz: geometric 
forms without necessary function [23]. The view taken in this paper is that the columns 
represent one end of a spectrum of orderliness, but that a single organizational order un-
derlies all. 

Many theoretical formulations have been devised to account for limited aspects of 
mesocortical organization, without any wide-ranging explanation having achieved uni-
versal acceptance. In contrast, the free energy principle and its relationship to the concept 
of prediction error minimization, as advanced by Friston and colleagues [24–34] proposes 
an overarching explanation for self-organizing systems, including brain function as a spe-
cific instance. It draws parallels between laws of nature from the principle of least action 
to the organization of artificial and real intelligence. A central concept is provided by 
Jaynes’ linking of the maximum entropy principle of optimum statistical information to 
the laws of thermodynamics, and, in a further step of unification, to Bayesian inference 
[26,27,35], so that these concepts are duals, each to the others. As an example of such a 
duality, the interactions of coupled modes in a dynamical system are equivalent to itera-
tive models of grammar [36]. This means that a correct explanation of neuronal growth 
and dynamics is de facto an explanation of information processing–a relationship Friston 
terms “self-evidencing”; that neuronal and synaptic growth must tend inevitably toward 
a stable state in which perturbations created by inputs are predicted from earlier learning, 
and signals generated internally minimize the impact of uninformative current inputs on 
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ongoing activity. This balancing control of information exchanges is supposed to take 
place both within the organism, and in its interactions with the environment. At an as-
ymptotic limit (although never reached in life) a state of perfect adaptation to the environ-
ment is hypothetically aiained.  

Another way to express this process is that within any system with a boundary via 
which it must interact with a surrounding environment, an open steady state must be 
reached in which equal and opposite signals are continuously exchanged via the bound-
ary, so as to cancel each other. This boundary is termed by Friston a Markov blanket [37]. 
In neurophysiological terms this means at the asymptotic limit information exchanges be-
tween brain and environment would correspond exactly to their mutual information, and 
the variational free energy–effectively the uncertainty of the system–would be zero. A 
mapping of all sensory and motor interactions with the environment onto the structure of 
developed synaptic connectivity would have emerged, as pathways for neural signals rep-
licating all the ways the organism has learned to interact with the world. 

Prediction error minimization and free energy minimization within a canonical 
model of the cortical macrocolumn have been introduced within the structural model of 
the cortex [38,39]. Here we provide a broader account, showing how growth processes 
and the maintenance of excitatory/inhibitory balance result in a structure conforming to 
minimum free energy and prediction error minimization, and suggesting a functional 
unity underlies the paradoxical appearances in the anatomical findings outlined above. 

This account is first formulated theoretically by considering the minimal properties 
that must emerge as the neural field self-organizes in accord with the free energy princi-
ple. We show that a particular anatomical order–one involving meso-scale mirror-sym-
metric systems of synaptic connection, and Markov blankets–ought to emerge during 
early development. Comparison is then made to outcomes of a biological growth model, 
itself matched to experimental data. There is agreement between the two models, and in 
combination they provide a provisional account of development and information pro-
cessing in the neocortex. 

2. Basic Considerations 
2.1. Cells 

Consistent with the structural model we assume that genetic determinants govern 
the pathways of cell migration in embryogenesis, ultimately leading to the characteristic 
six layered neocortex structure of excitatory and inhibitory neurons. Developing neurons 
operate close to metabolic limits imposed by their large surface area and high demands 
for ion pumping [40]. Synapses are few compared to the number of contacts made be-
tween axons and dendrites, so neurons form a sparse one-to-many network, with weak 
connectivity per synapse [41,42]. Neurons make synaptic contacts preferentially with 
neighbours, since dendritic and axonal trees are denser near their somas, but synaptic 
sparsity forces connection to jump intervening cells, so that closely placed neurons form 
densely interwoven and interpenetrating networks.  

2.2. Presynaptic Flux and Learning Rules 
All neurons in the neural field exchange synaptic flux via all polysynaptic and mon-

osynaptic routes to all other neurons. Peak synaptic flux delivered along all pathways of 
flow is given by 

𝜑!" "𝑡 +
|𝑖 − 𝑗|
𝜈 * = 𝜀!"𝑔!"𝜌!"𝑄"(𝑡) (1) 

where 	𝜑!" is the presynaptic flux received at the 𝑖 − th neuron from the 𝑗 − th neuron, 
𝑄" is the pulse rate of the 𝑗 − th neuron, 𝜐 is the speed of signal spread, and |!$"|

%
 is the 

delay from pulse generation to arrival of peak pulse density at presynapses, summed over 
all routes. Synaptic gains are separated into three time-scales, so that 𝜀!" , 𝑔!" , 𝜌!" are the 
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transient synaptic efficacy, the slow dynamic synaptic gain, and the structural synapse 
gains along the polysynaptic pathways, respectively. Synapses compete for resources on 
all three time-scales. The Hebbian gain terms in Equation (1) follow the unification of fast 
and slow synaptic learning rules proposed by Izhikevich and Desai [43] combining rapid 
modification of synapses by short-term plasticity (STP) and short-term depression (STD), 
with slower synaptic consolidation under the Bienenstock-Cooper-Monro (BCM) rule, in-
cluding the slow “floating hook” limitation of consolidation by negative feedback. Fol-
lowing dendritic summation of presynaptic pulses, pulse generation follows a suitable 
sigmoid function—the details of which are inessential to the following arguments. 

2.3. Excitatory/Inhibitory Balance 
Homeostatic mechanisms keep the firing rates of cortical neurons and the balance of 

excitatory and inhibitory synaptic impulses within stable limits. Anti-Hebbian synaptic 
plasticity [44], the mechanisms of which are not yet fully understood, acts to normalize 
excitatory and inhibitory synaptic gains, while leaving the relative strengths of Hebbian 
influences unchanged. Competitive metabolic processes may mediate the anti-Hebbian 
effect, and, as observed experimentally, the time-course of anti-Hebbian plasticity is be-
tween hours and days. Yet rapid excitatory/inhibitory stabilization is essential, as aiested 
by the ease with which epilepsy can be triggered by local cortical irritation or photic stim-
ulation. The means by which ongoing rapid stabilization is maintained is key to our fol-
lowing arguments. 

3. A minimum Free Energy Organizational Unit 
3.1. Rationale 

Equation (1) can be re-wriien as a state equation for the neural field, in matrix/vector 
form 

Φ(𝑡) = 𝐺𝐷𝑄(𝑡) (2) 

Φ(𝑡) is a matrix of unidirectional pre-synaptic flows, 𝐺(𝑡) is a matrix of aggregate 
presynaptic gains associated with each flow, 𝐷(𝑡) is a delay matrix of axo-dendritic con-
duction times, and 𝑄(𝑡) is a vector of action potential pulse rates.  

Φ(𝑡) can be decomposed into spatial eigenmodes (paierns of synchronous and bi-
directionally symmetric flow), and asymmetric and variable fluxes coupling the spatial 
eigenmodes into time-varying paierns. 𝐺(𝑡)  and 𝐷(𝑡)  are a description of synaptic 
strengths and cell positions—with Φ(𝑡) leading the development of the growth of syn-
apses and cells. By tracking development of Φ(𝑡) we should arrive at descriptions of both 
neural system dynamics, and the associated mesoanatomical order created by the consol-
idation of synaptic connections. This is first formulated theoretically by considering the 
minimal properties that must emerge as the neural field self-organizes in accord with the 
free energy principle. 

3.2. Constraints 
Development is subject to three constraints: 
Firstly, minimization of free energy: 

𝐹 = 𝐴 − 𝐶	 → 0 (3) 

where 𝐹 is variational free energy, 𝐴 is total presynaptic flux autocorrelation, and 𝐶 is 
total presynaptic flux cross-correlation. These terms might also be read as Accuracy minus 
Complexity—so that when variational free energy is minimized the activities of all mem-
bers of {𝜑!"(𝑡)} can be reduced to probability densities among them. This in turn is equiv-
alent to optimization of Bayesian model evidence, and this is what is meant by the term 
self-evidencing [26,27,35]. 
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Secondly, minimization of perturbation from steady state, equivalent to prediction 
error minimization:  

ΔΦ&(𝑡) − ΔΦ$(𝑡) → 0 (4) 

where ΔΦ&(𝑡) and ΔΦ$(𝑡) are each other’s negative vector sums. At asymptote, each 
acts to predict and minimize errors in the other. This constraint is here applied not only 
for sensory and motor exchanges, but to exchanges in the neural field at all levels.  

Thirdly, maintenance of excitatory/inhibitory balance: 

Bφ' →Bφ( → constancy (5) 

where ∑𝜑) is the total excitatory presynaptic flux, and ∑𝜑! is the total inhibitory pre-
synaptic flux. This supplies a steady-state constraint that cell pulse rates remain stationary 
in the main, as development proceeds.  

3.3. Minimization of Free Energy, 𝐹 → 0 
At each stage of growth, although there are an increasing number, 𝑛, of unidirec-

tional flows of presynaptic flux as synaptic and cell numbers are increasing, the total au-
tocorrelation, 𝐴, during a relatively short epoch, 𝑇, at all lags, 𝜏, is  

𝐴 =
1
2𝑇BP P 𝜑!"(𝑡)𝜑!"(𝑡 − 𝜏)𝑑𝜏𝑑𝑡

&*

$*

+

,

-

!"

 (6) 

and for the -
.
 pairs of bidirectional flows, total cross-correlation, 𝐶, is 

𝐶 =
1
𝑇BP P 𝜑!"(𝑡)𝜑"!(𝑡 − 𝜏)𝑑𝜏𝑑𝑡

&*

$*

+

,

-
.

!","!

 (7) 

Therefore free energy (flux autocorrelation and crosscorrelation have units of power, 
not energy, but in reference to open exchanges across a Markov blanket, are referred to as 
energies.) is zero when for all 𝑖, 𝑗, 𝑡, 𝜏,  

𝜑!"(𝑡)𝜑!"(𝑡 − 𝜏) + 𝜑"!(𝑡)𝜑"!(𝑡 − 𝜏) = 𝜑!"(𝑡)𝜑"!(𝑡 − 𝜏) + 𝜑"!(𝑡)𝜑!"(𝑡 − 𝜏) (8) 

Equation (8) describes ongoing variations of synaptic flux as the neural field interacts 
with imposed signals via a Markov blanket. On arithmetical grounds these variations re-
quire that at least one term 𝜑!" is equal to a term 𝜑"! at each time-step, creating trajecto-
ries about an absolute equilibrium. At this equilibrium all four terms are equal, energy is 
equipartitioned, excitatory or inhibitory fluxes between all pairs of cells are bidirectionally 
symmetrical, and the system is time-stationary and may be periodic. This equilibrium 
condition, when applied to all combinations of interactions between excitatory and inhib-
itory cells, corresponds to zero-lag synchronous oscillation [45]. For exchanges between 
pairs of excitatory cells, or between pairs of inhibitory cells, with 𝜏 = 0, excitatory or in-
hibitory populations of neurons fire synchronously and exchange bidirectionally symmet-
rical flux. In exchanges between excitatory and inhibitory cells the inhibitory flux can be 
regarded as the negation of excitatory flux. Therefore, for 𝜏 = |𝑖 − 𝑗| 𝜈⁄  (half the period of 
oscillation) excitatory and inhibitory cells fire in anti-phase with effectively the same sym-
metrical flux exchange. The collective effect of the exchanges is zero-lag synchronous os-
cillation, and under small perturbations the oscillating equilibrium is stable. Fields of syn-
chrony are spatial eigenmodes of Φ(𝑡).  

Conversely asymmetric exchanges of flux can mediate time-varying eigenmode cou-
plings—that is, the control of perturbations about synchronous oscillation. The perturba-
tions associated with eigenmode coupling necessarily become both minimal and efficient, 
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analogous to the minimal pdV work in thermodynamic systems as pressure and temper-
ature differentials seile to stability. Leading to: 

3.4. Minimization of Prediction Error, 𝛥𝛷&(𝑡) − 𝛥𝛷$(𝑡) → 0 
Symmetric exchanges of flux at equilibrium meet the condition by definition. Asym-

metric exchanges must evolve to become paired so that each one of a pair generates a flux 
oppositely directed to the other as closely as possible—yet these cannot be between the 
same cells. This requires dual systems of connection, one system the mirror image of the 
other, and since these connections must mediate coupling between spatial eigenmodes 
rather than simply blocking eigenmode interactions, the eigenmodes themselves must oc-
cur as duplicates with mirror-symmetry. 

3.5. Excitatory/Inhibitory Balance, ∑𝜑) → ∑𝜑! → 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑐𝑦 
Synchronous equilibrium itself requires equal exchange between excitatory and in-

hibitory neurons. If the entire field is to remain in balance, parts of the field in excess ex-
citation must interact with parts of the field in excess inhibition, and vice-versa. Therefore 
each of the systems of coupled eigenmodes in a mirrored pair must interact with its part-
ner to establish joint excitatory/inhibitory balance—necessarily requiring collision of trav-
elling waves in the neural field—as follows.  

3.6. Interactions within and between Spatial Eigenmodes 
Figure 1 shows the four possible ways that adjacent areas in a neural field, each area 

part of a spatial eigenmode organization, can interact. In the middle column blocks of 
interacting excitatory and inhibitory cells constituting spatial eigenmodes are shown cross 
connected by excitatory links. The cross-connections shown are those of medium or long-
range connections, and are excitatory only. Short-range inhibitory cross-links would also 
be capable of mediating analogous effects to those next described, but are here ignored 
for simplicity.  

In the top row, interaction is symmetrical and excitatory, maximizing co-synchrony 
while increasing total excitation. In the second row interaction is symmetrical and inhibi-
tory, in which case equal and opposite components in the colliding waves are cancelled, 
permiiing co-synchrony with reduction of total excitation. Asymmetric interactions 
shown in the remaining two rows mediate eigenmode cross-coupling, with an increase or 
reduction in total excitation respectively. 
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Figure 1. Exchanges between spatial eigenmodes. The grey squares marked 𝑒 and 𝑖 represent 
clusters of excitatory and inhibitory neurons whose interaction generates a field of synchronous 
oscillation (a spatial eigenmode). Bridging between the synchronous systems, excitatory presynap-
ses link to either the excitatory cells or the inhibitory cells in the neighbouring assembly, and do so 
either symmetrically or asymmetrically. Approximate aggregate pulse cross-correlations between 
assemblies of excitatory cells in each of the paired eigenmodes are shown on the right. 

3.7. Redundancy and Information Storage 
The hypothetical mirror-symmetric connection systems require a 2:1 redundancy of 

the information storage in their synapses. Using the Nyquist and Shannon-Hartley theo-
rems, and considering 𝑛 directed synaptic couplings as unit-valued and composed of 𝑆 
synapses that have been shaped by learning, with the remainder considered random ab 
initio. Thus 

𝑆
𝑛 =

𝐶
𝐴 ≤ 1 (9) 

is a synaptic signal/noise ratio, and 

𝐷 = 𝑛𝑙𝑜𝑔. ]1 +
𝑆
𝑛^ (10) 

is the number of bits needed to specify the information stored in the synaptic couplings.  
If the information input to the system is smaller by a factor 𝑀 than the synaptic stor-

age capacity, then any one of 20/𝑀 distinct inputs can be stored redundantly, as 𝑆 𝑛⁄ →
1, learning approaches asymptote, and free energy zero. This provides a further condition, 
𝑀 ≥ 2, for the emergence of paired mirror symmetric systems. 
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3.8. Mirror Symmetric Fields and Markov Blankets 
Applying the mechanisms in Figure 1, Figure 2 illustrates a system composed of a 

pair of mirror-symmetric coupled spatial eigenmodes, each of the pair generating oppo-
sitely directed, colliding, travelling waves. The diagram shows the topology of the con-
nections and flux exchanges—not a specific topography in the form shown. It is the syn-
aptic connectivity that is essential, so the twin eigenmode systems might be separated by 
some distance, or their cell soma positions might be interdigitated.  

 
Figure 2. The topology of neural field interactions meeting requirements for minimization of free 
energy, minimization of prediction errors, and maintenance of excitatory/inhibitory balance. Paired 
mirror-symmetric systems of coupled spatial eigenmodes (arbitrarily represented as yin-yang fig-
ures) each interact internally via excitatory and inhibitory cross-couplings (solid and dashed black 
lines) generating oppositely directed travelling waves (colored arrows), that collide at the double 
dashed line. 

Excitatory/inhibitory stabilization can take place at the line of wave collision, since 
excess of excitation or of inhibition in waves from either side can be compensated at a fast 
time scale by shift between the symmetrical excitation and symmetrical inhibition modes 
of coupling-shifts modulated by the negative feedback “floating hook” property of the 
BCM rule, which diminishes synaptic gain in the more driven synapses. Adaptation may 
then be mediated more slowly by other cellular mechanisms of anti-Hebbian plasticity. 
As junctional exchange manages excitatory/inhibitory balance, prediction error minimi-
zation proceeds within each of the mirror duals, and free energy approaches zero. The 
signals arriving at the junction progressively maximize their mutual information. The mir-
ror-like junction is therefore a Markov blanket, in Friston’s sense. 

Interaction of dual systems can be generalized to multi-way interactions throughout 
the cortex, as continuously changing synaptic efficacies (Equation (1)) modulate and seg-
regate the paierns of pulses and synaptic flux present at any one instant, achieving mini-
mization of prediction errors in all exchanges. At a whole-brain scale, such a system is also 
suited to minimize prediction error in interaction with subcortical systems and the exter-
nal milieu—thus forming a large-scale Markov blanket between cortex and subcortex.  
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4. Emergence of Mirrored Synaptic Maps in Actual Anatomy 
It must now be shown whether dual mirror-and-blanket systems can be identified in 

cortical mesoanatomy, and explained how their development takes place. 
The preceding argument showed that as free energy is minimized, maximization of 

synchrony is a consequence. In biological terms the converse argument is more easily 
made with regard to the neocortex. Synchronous firing appears early in neuronal devel-
opment along with the development of small world connectivity [46]. A substantial frac-
tion of developing neurons succumb to apoptosis [47], and those neurons prevented from 
entering into synchrony succumb to apoptosis [48,49]. The surviving cells thus form a 
matrix maximizing synchronous oscillation. A second factor in cell selection, minimiza-
tion of total axonal length, lowering metabolic demand in the surviving cells, will assist 
their survival [40], and favour the evolution of a small-world configuration [7,50]. 

4.1. Columnar versus Noncolumnar Cortex 
It is useful to first explain how, in this model, the difference between columnar versus 

noncolumnar cortex comes about. Simulation of cortical development [51] shows small 
world selection and selection for maximum synchrony can be in conflict. It is the relative 
length of long and short axon neurons included in the simulation that determines whether 
clearly columnar, or apparently diffuse, non-columnar organization results. Suppose two 
populations of cortical neurons, with axonal tree distributions  

𝜌1 = 𝑁1𝜆1 exp[−𝜆1𝑥] (11) 

𝜌2 = 𝑁2𝜆2 expj−𝜆2𝑥k (12) 

where 𝜌1	(𝑥), 𝜌2(𝑥) are respective normalized densities of the axonal trees of long-axon, 
𝛼 cells, and short-axon, 𝛽 cells, as a function of distance, 𝑥, from their cell somas. The 
fraction of presynapses generated by the two cell types are 𝑁1 , 𝑁2, and 𝜆1 , 𝜆2, are their 
axonal inverse length constants. 

Bidirectional connection density, 𝜌1&2, for all cells would be a maximum if 

𝜌1&2(𝑥) = 𝑁1𝜆1 exp[−𝜆1𝑥] + 𝑁2𝜆2 expj−𝜆2𝑥k (13) 

whereas density of connection in an ultra-small world network [52] where inter-soma dis-
tance is surrogate for increasing order of neighbour separation, is given by 𝜌1&2(𝑥 + 𝑘)$.. 
Thus, disparity of connection density, Δ(𝑥), of an ultra-small world system and that of 
the axonal trees of 𝛼 and 𝛽 cells is at best 

Δ(𝑥) = (𝑥 + 𝑘)$. − o𝑁1𝜆1 exp[−𝜆1𝑥] + 𝑁2𝜆2 expj−𝜆2𝑥kp (14) 

and competitive processes maximizing synchrony (see below) force further departures in 
separation of cell bodies from the ultra-small optimum. 

Simulations of cortical growth presumed that the axonal tree lengths are genetically 
determined and that the numbers of cells in the two populations are selected so as to op-
timize both synchrony and small world connectivity. For higher and more equal values of 
𝜆1  and 𝜆2  ultra-small world order is most closely approximated, therefore predomi-
nates, and columnar definition is not apparent. Where 𝜆1 ≪ 𝜆2 , maximization of syn-
chrony among the numerous short-axon neurons is the predominant influence, and 
clearly columnar organization results. The loss of definition in the noncolumnar instances 
arises from the merging and inter-weaving of cell networks, made possible by the sparsity 
of synaptic connectivity. Whether apparently columnar or diffuse, simulations show that 
the same paierns of synaptic connections best maximizing synchrony are present, but are 
organized in interdigitated overlapping systems where small-world organization has pre-
dominated. As is later explained, Figure 3, boiom right, illustrates the way this merging 
takes place. 
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Figure 3. Organization of cortical columns. Left: Reconstruction showing disposition of cells and 
synapses for maximum synchrony in a surface-oblique view of a column. Large coloured neurons 
represent superficial patch cells. Black and white smaller cells are local short-axon excitatory cells. 
Small coloured spheres represent presynapses efferent from patch cells of the same colour. (Return 
bidirectional synaptic connections not shown.). Similar synaptic self-organization is shown in the 
deeper layers of the column. Right top left: A subset of local cells from the reconstruction are shown 
in isolation, indicating the way that interpenetration of networks of local cells is a consequence of 
sparsity of connection. Black and white colouration is arbitrary other than to indicate the interweav-
ing. Occasional cross-links, shown as dashed black and white, bridge the sparse networks, and re-
sult in amplification of synchrony in closed loops. Right top right: An abstract representation of the 
networks right top, showing the cells as arrayed in a closed loop configuration analogous to a Mo-
bius strip. Coloured dots and swaths of colour show how presynapses from patch cells are deployed 
to maximize co-resonance between local and patch cells. Right bo=om: Two views of adjacent col-
umns. On the left is the arrangement in columnar neocortex. Columns abut, but do not overlap, and 
synaptic organization is mirrored between columns. On the right, the arrangement in noncolumnar 
cortex. The two columns are interpenetrating, permi=ed by the sparsity of connections, and there is 
no difference in synaptic organization—but small-world organization has predominated over max-
imum synchrony organization. 

It is emphasized that in the following account, the description of emerging paierns 
of synaptic connection is to considered general throughout cortex, although comparison 
with the clearly columnar visual cortex (V1), for many years the focus of experimental 
study, enables more direct comparison between theory and experiment.  

4.2. Early Embryonic Development 
At the earliest stage developing synaptic connections are initially random, and poly-

synaptic pathways between any two neurons develop as cells and synapses proliferate, 
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bringing about polysynaptic flows that are roughly bidirectionally symmetrical between 
all cells, so synchrony is early apparent in developing cells, as they begin to associate into 
small world systems [46]. Bidirectional monosynaptic connections begin to develop, pref-
erentially selected out of the polysynaptic flow between neurons, further increasing mag-
nitude of synchrony.  

As previously described, for simplicity we treat distribution of axonal lengths in the 
developing cells as two populations—one of excitatory cells with long axons, and a short 
axon population of mixed excitatory and inhibitory cells [53]. 

At a distance, 𝑋, from their cell bodies, the population density of the axonal trees of 
the short-axon and long axon cell populations are equal.  

𝑋 =
−𝑙𝑛 ]𝑁1𝜆1𝑁2𝜆2

^

𝜆2−𝜆1
 (15) 

The short-axon, 𝛽, cells whose axonal density is greatest at short range, preferen-
tially form densest connections with each other at distances less than 𝑋, clustering into 
columnar-like systems. The long axon, 𝛼, cells form preferential connections in patches 
where their cell bodies are closely situated, and because of competitive exclusion by 𝛽 
cell synapse formation, form other preferential long-range connections at distances 
greater than 𝑋—so that patches of 𝛼	cells form with skipping connections at lengths that 
are multiples of 𝑋, in a grid with edges of length 𝑋, enclosing clusters of short-axon cells. 
This reproduces the superficial patch cell network.  

The long axon cells and short axon cells exchange bidirectional monosynaptic con-
nections at distance 𝑋. The upshot is that within each cluster the short-axon cells and 
their surrounding patches of long-axon cells project synapses to each other 1:1, maximiz-
ing synchrony by creating swaths of connection in arcs of a circle (in two dimensions) or 
segments of a spherical surface (in three dimensions) of radius 𝑋. Again because of syn-
aptic sparsity, the formation of 1:1 maps is not confined to a simple Euclidean projection, 
but can project from the clusters of 𝛼 cells to separate, interpenetrating, parts of the en-
closed 𝛽 networks as the Rheimann projection that will best maximize joint synchrony. 
Positions in the 𝛼-cell network can be considered as global positions in the cortical area, 
and designated complex number positions, 𝑃, while positions in any of the local 𝛽-cell 
clusters are designated 𝑝. (The complex plane positions may be further generalised to 
positions in three dimensions, as required.). As bidirectional monosynaptic connections 
emerge, they result in global-to-local maps of the form 

𝑃 ↔ 𝑝	𝑤ℎ𝑒𝑟𝑒	𝑝 = ±√−1𝑘
(𝑃 − 𝑝,)-

|𝑃 − 𝑝,|-$3
+ 𝑝, (16) 

(𝑃 − 𝑝,)- |𝑃 − 𝑝,|-$3⁄  describes angular multiplication by 𝑛 in the projection from 
𝑃 to 𝑝. The factor √−1𝑘 defines the rotation by 90 degrees and scale of the projection 
created by the arcs of synapses. Chirality is shown + or −, and 𝑝, is the centre of a 
short-axon 𝛽 cell cluster. This is a mirror-mapping in a topological sense—the global 
field being reflected in each local map. Figure 3 left shows a reconstruction of these syn-
aptic projections in the upper, and in the lower, layers of a developing column.  

The value of 𝑛 also represents the number of turns about the 𝛽 cell cluster centre 
made by sparse and interpenetrating 𝛽 cell networks before they form a closed self-ex-
citing system, and the global-to-local projection must match the closed loop conformation 
in the form best maximizing synchrony. The projection of 𝛼 cells to 𝛽 cells from diamet-
rically opposite sides of a local map, each at range 𝑋, forces their synapses to be deployed 
in arcs radiating from the local maps center—either deployed on opposite sides of the map 
center—in which case 𝑛 = 1—or both radiating from the center on the same side—in 
which case 𝑛 = 2. The 𝑛 = 1 case is a simple Euclidean mapping, whereas 𝑛 = 2 is a 
mapping analogous to the mapping of a plane onto a Mobius strip. The laier arrangement 
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permits greater total synchrony by dint of the longer chains of connection among the 
sparse, but cross-connected, 𝛽 cell networks. Angles in the global field from 0 − 𝜋 are 
mapped locally from 0 − 2𝜋 in the plane view of the column, while global angles from 
𝜋 − 2𝜋 are also mapped (on a separate mesh of cells) from 0 − 2𝜋 in the same view, cre-
ating the form of an orientation preference singularity. Figure 3 top right shows how con-
nections in the interpenetrating nets of sparsely connected cells can be construed in this 
way. 

By forming mirror symmetry arrangement of adjacent local maps, homologous posi-
tions in the projections from the global map are brought into highest contiguity—thus 
enabling them to form connections further maximizing their joint synchrony. That is 

𝑝4 ↔ 𝑝5	𝑤ℎ𝑒𝑟𝑒	𝑝4 = +√−1𝑘
(𝑃 − 𝑝,4).

|𝑃 − 𝑝,4|
+ 𝑝,4	 

𝑎𝑛𝑑	𝑝5 = −√−1𝑘
(𝑃 − 𝑝,5).

|𝑃 − 𝑝,5|
+ 𝑝,5 

(17) 

𝐴 and 𝐵 indicate adjacent local maps (columns). The arrangement may be discrete 
and columnar, or the adjacent maps may themselves be interpenetrating to variable de-
gree in noncolumnar cortex, as shown boiom right in Figure 3—synchrony will still be 
maximized. 

Similarly, maps can form at different depths on the six-layered cortex. As these form 
in layers, each similarly oriented with regard to the surrounding global map, they are 
arranged in mirror symmetry in the axis of cortical depth. 

Experimental findings explained by this model include patch cell clustering and in-
terpatch order, the organization of orientation preference (OP) in monocular areas of V1 
including OP singularities, linear zones, and saddle points, and in binocular ocular dom-
inance (OD) columns—also explaining the “like-to-like” connections made by patch cells 
to short-axon cells with common OP preference in separate local maps.  

A critical test of this explanation of the organization of OP maps [53] was passed in 
the simulation of variation of OP when measured using moving visual lines with differing 
angle of aiack, line length, and stimulus speed [54]—a finding explained by lag times of 
conduction in lateral intracortical connections. This distinguishes the present model from 
feedforward, self-organizing map, and dimension reduction models of OP organization. 
Although the two contrasted model types are compatible, pure feedforward supposes 
only fixed feature representations and does not include effects of lateral contextual inter-
actions.  

A separate consideration applies to formation of mirror assemblies maximizing joint 
synchrony as cortico-cortical connections develop, creating inter-area linkage. Cortico-
cortical projections form U-shaped loops in cortical white maier, projecting from one cor-
tical area to its neighbours with mirror symmetry, and with subsequent onward projec-
tions to further cortical areas creating observable recurrent reversals of map chirality [55]. 
This can be accounted for as a simple consequence of the form of the fibre projections [56] 
although the complexity of interareal connections and hierarchies obscures the effect in 
some cases. 

Thus a multitude of mirror systems can tile the cortex, as adjacent columns, as inter-
penetrating sparse systems equivalent to columns, or as systems separated but intercon-
nected by cortico-cortical connections. They can be mirrored in layers of cortical depth, 
with each layer laterally mirrored. They form mirrors between scales, as the patch system 
projects to each column or its non-columnar equivalent, and as mirrors between entire 
cortical areas. (Figure 4). These alternative ways in which mirrors can be arranged form 
the set of topographies that can be created within neocortex, each corresponding to the 
topology of the theoretical unit in Figure 2. 
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(a) Figure 4. Summary representation of all the ways mirror representations arise. Double black 

dashed lines indicate lines of mirror symmetry, and putative Markov blankets. Red and blue 
arrows indicate presynaptic flows toward lines of symmetry. (a) Cortico-cortical and Inter-
areal connections. Their U-shaped form projects each cortical area to its neighbours with mir-
ror symmetry. (b) Each local map interacts with the global map with (topological) mirror sym-
metry, as the local short-axon neurons exchange flux with the surrounding cortex via the patch 
cell system. (c) Local cell groups interact with adjacent groups of opposite chirality—whether 
the groups interpenetrate, abut, or are further separated. (d) Within every column mirror sym-
metry is generated between layers, while also able to interact laterally with other mirrored 
systems. 

 

4.3. Later Embryonic and Early Antenatal Development 
Early in antenatal life sensory afferents reach the cortex [57] and eventually impose 

complicated temporal structure on the inputs to the cortex, replacing the earlier stochastic 
exchanges. The radially symmetric mirror structures are now able to act as a scaffold upon 
which spatiotemporal images can be stored and read out. 

4.3.1. Spatiotemporal Images 
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As an external stimulus is imposed upon the cortex, signals relayed intracortically 
from the global to the local scales, arrive in neighbouring macrocolumns within a short 
epoch. Concurrent arrivals at closely situated neurons generated from different positions 
and different times in the global field are able to promote synchrony and secondary for-
mation of synapses between the local cells. It can be shown [58] that this can result in the 
storage in the local map of the representation of a moving image 𝑃, (𝑡 − |6$7|

8
) → 	𝑝(𝑡). 

This provides the basis of variation of OP with stimulus velocity and orientation men-
tioned above. Representations formed in this manner can differ in the information about 
the object represented. Information from widespread positions in the global field would 
beier represent movement than shape, and from positions closely situated in the global 
field, the shape of the object. This may account for representations higher in the cortical 
hierarchy specializing in differing types of visual information—the dorsal and ventral vis-
ual streams [59].  

Chains of such images would store more complicated sequences, and in motor cortex, 
reversal of the processes could be read out as spatiotemporal motor outputs. 

4.3.2. Coupled Spatial Eigenmodes, Spatial and Temporal Frequency Preferences 
The process generating spatiotemporal images is equivalent to the generation of cou-

pled spatial eigenmodes, and explains other response preferences of V1 neurons [59]. Sig-
nals from positions in the global field circumferentially arrayed with respect to local maps 
generate a high frequency response in the local cells, in contrast to the lower frequency of 
responses elicited from radially positioned inputs. Synchronous fields thus generated are 
preferentially tuned to high frequencies and arrayed circumferentially within local maps, 
or tuned to low frequencies and arrayed radially. Adjacent circumferential high frequency 
domains are readily coupled by unidirectional excitatory couplings, as are adjacent radial 
low frequency domains—but the orthogonal disposition and poor frequency matching of 
high and low frequency domains leads them to be mutually antagonistic via their inhibi-
tory surrounds. These properties account for the spatial (SFP) and temporal (TFP) fre-
quency preferences of local cells [60,17]. High SFP cells (HSFP) occur most commonly in 
linear zones near the circumferential perimeter of macrocolumns. Low SFP (LSFP) zones 
are more scaiered and radially located. At OP singularities either an HSFP domain or an 
LSFP domain is located-interpreted as competitive conflict forcing one or other outcome. 
Temporal frequency preferences (TFP) are accounted for along with SFP, since it is known 
that TFP = stimulus velocity x SFP [61]—as expected for intracortical laterally spreading 
signals. HSFP/HTFP and LSFP/LTFP zones thus appear to reveal the existence of coupled 
spatial eigenmodes on each macrocolumn. 

Adjacent macrocolumns must receive inputs from the global field that are from the 
same stimulus, translated in space and time. Since the scaffold structure of each macro-
column approximates a mirror reflection of its neighbours, adjacent macrocolumns could 
interact with each other as envisaged in Figure 2, with the line of junction acting as a Mar-
kov blanket. By reaching a co-synchronous stable exchange, they would have abstracted 
and stored wider general characteristics of the stimulus object’s shape and movement. 

5. Conclusions 
5.1. The Logical Structure of Our Argument 

We have shown that application of the free energy principle to a simple but realistic 
neural field leads to a theoretical unit of self-organization, constructed of mirrored assem-
blies of synaptic connections, and separated by a Markov blanket. On the other hand, sim-
ulations of development in the neocortex lead to a compatible outcome—with provisos. 
The conflicting demands of maximized synchrony versus small-world organization mean 
that the outcome of growth simulations is expressed in the simplest topographic relation 
to the theoretical unit only in columnar cortex. The sparsity of all neuronal connections 
accounts for the way a single unit of synaptic organization can be masked by the 
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interpenetration of separated networks. In a related way, sparsity of connection accounts 
for the form of OP singularities and the Mobius strip-like form that the mirrored assem-
blies must take.  

This means that our argument is limited by the fact that the ubiquity of paired mirror 
representations is inferred rather than directly demonstrated, and even in the relatively 
clear case of mirror organization of OP seen in OD columns, this is an interpretation of the 
underlying connections rather than direct visualization. However, the growth model has 
wide explanatory power, greater than any preceding model, for findings in the visual cor-
tex—notably accounting for the topographic organization of OP, SFP, TFP, and like-to-
like connections, and also reproducing the dynamic variations of OP with object speed 
and angle. It explains why OP maps are apparent at birth, since emergence of these struc-
tures requires only noise-like driving, and only a radially symmetrical structure appears 
at that stage. Likewise, it also accounts for the results of postnatal visual deprivation, since 
it requires ongoing post-natal learning to overwrite the radially organized antenatal scaf-
fold. Therefore there can be some confidence in the growth model’s validity, and the 
growth simulation outcomes show that it is logically consistent to extend the model to the 
neocortex in general. 

5.2. The Properties of the Theoretical Unit—Internal Markov Blankets 
The theoretical unit, derived directly from the free energy principle, makes explicit 

an extra property not obvious from the growth model alone—the development of a Mar-
kov blanket between each pair of mirror-ordered connections. Opposed signals are not 
brought directly into matching interaction, but their cumulative effects on eigenmode cou-
pling within each of the mirror assembly pair are brought to excitatory/inhibitory balance 
at the line of mirror junction, and thus mutual information between the mirror pairs is 
maximized. This has major functional implications, introducing local stabilization and the 
interplay of extensive co-synchrony with prediction error minimization throughout the 
neural field, at all scales and in cortical depth. Error minimization is not restricted to par-
ticular special systems, as in the canonical model of error minimization. Overall, error 
minimization proceeds in a fully distributed fashion and provides a universal mechanism 
for the abstraction and storage of common features in cortical interactions at all scales.  

This can be illustrated by explanation of the enigmatic relationship of OD columns 
to binocular fusion in different species. In the more straightforward case in which OD 
columns are present, laterally adjacent OD columns, interacting via a Markov blanket 
while each receiving an input from the visual field from opposite eyes, can achieve maxi-
mum mutual information with each other, while similarly interacting with mirror assem-
bles higher and lower within each column. Maximization of their joint mutual information 
utilizes effects of perspective to create a representation equivalent to a 3D image. Yet the 
synaptic organization achieving this effect does not depend on specific columnar order, 
and could exist perfectly well if the cell bodies composing the columns were intermingled. 
It is the synaptic topology that is important. Thus species without cortical columns in V1 
can still have 3D vision, because they have separated inputs from each eye in OD- like 
conformation. 

5.3. Generalization to Development and Function beyond the Neocortex 
The developmental growth model is cast in terms of neocortical self-organization, 

with long-range excitatory connections and simplified intrinsic axonal ranges empha-
sized. This begs the question of integration of neocortical and subcortical systems not only 
as pathways of sensory and motor interactions with environment, but in the regulation of 
cortical arousal and aientional focus, and of reinforcement. These aspects have been given 
brief aiention in regard to the growth model [62].  

A further question is whether the development of mirror symmetric synaptic systems 
with intervening Markov blankets may be applicable more widely, to neurogenesis in 
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general—and more particularly might be applicable to the paleo- and archicortical pro-
genitors of the neocortex in the structural model. A wider unification by amalgamation 
with analyses of limbic neocortical relations [5,6] might then be possible. As the cortex 
emerges by differentiation from cells of limbic origin, during its growth it might be 
brought, by the same process of predictive error minimization, into harmony with the 
developing limbic and subcortical systems, while concurrently more direct exchanges of 
neocortex and environment via major sensory and motor pathways develop. 

There appears no restriction to developing further growth models along these lines. 
Oscillation occurs, and can be modelled in other brain systems with wholly different syn-
aptic architecture and fiber ranges—e.g., olfactory cortex [63]. The theoretical account of 
development of mirror systems with intervening mirror blankets is wholly general, sub-
ject only to the listed constraints, so specifics of connectivity will affect the topographies 
of connection, not their topology. It may be assumed that the same selective processes 
could operate among neural precursors with widely different genetic variations in avail-
able cell types. Although the growth model depends upon selection by apoptosis of syn-
apses and cell positions maximizing zero-lag synchrony, it is unclear whether this is the 
only selection that might apply widely in the brain—or, indeed, in the neocortex itself. 
The maximization of zero-lag synchrony is not a unique pathway to minimum variational 
free energy. In other circumstances paired mirror systems organized into limit cycles, or 
chaotic airactor systems, are theoretically possible, and could occur in any neural system 
in which prediction error minimization was an essential airibute.  

5.4. Testing and Cellular Mechanisms  
The growth model is subject to further testing on a rather grand, but definitive level. 

Connectivity analysis in both columnar and noncolumnar cortex ought to establish that 
linkages of patch cells and short axon cell clusters are similar in both types-discrete in 
columnar cortex, and overlapping in noncolumnar cortex. At the same detailed micro-
scopic level, it should be possible to demonstrate that within short-axon clusters like-to-
like connections terminate in a Mobius-like manner, on the interpenetrating and inter-
twined short-axon local cell networks. 

Integration of this model with mechanisms of anti-Hebbian plasticity, synaptogene-
sis, apoptosis, and the role of neural energetics, needs to be further demonstrated or dis-
proved, when further advances in these fields permit. Finally, it may be remarked that 
large-scale chip emulations of neurons in mirror arrays may be practicable, and might 
then provide an anatomically realistic framework in which to explore unsupervised learn-
ing. 
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