Digital experiences

Paul Bourke

Theme I:Visualisation

- Providing insight
- Usually involving computer graphics
- Application to many fields
 - Data
 - Science
 - Mathematics
 - Heritage
- Audience
 - Researchers and their peers
 - Stakeholders and funding bodies
 - General public, exhibitions, education

Contents

- Visualisation: "Why"
- Displays: "How"
- Examples of projects based upon the displays mentioned
- Three current projects

Theme 2: Displays

- Main way of communicating information to the brain is through the sense of vision
- Data can be communicated by other means
 - Haptics: sense of touch
 - Sonification: sense of hearing, turning data into sounds
 - Taste and smell: ?
- Displays that leverage the human visual system
 - Stereopsis: Depth perception
 - Peripheral vision: Immersion
 - Presence, the sense of "being there"
 - Acuity: Resolution (I arc minute = 1/60 degree)

Stereopsis - Peripheral vision - Fidelity

- Relatively easy to achieve any one of these.
- More difficult to achieve all three at once.

	Stereopsis	Peripheral	Acuity
3D walls			
VROOM (Virtual room)			
Tiled displays (Planar)			
HMD (Head Mounted Display) VR headset			
Light table			
iDome			
Planetarium			
AVIE (Advanced Visualisation and Interaction Environment)			
EPICylinder (Enhanced Perception and Interaction)			

<image>

Tiled displays

- At a certain point the only way to higher fidelity is to tile image generators together.
- One option is multiple projectors. Alignment and blending is a pain.
- Another is to tile display panels. Main issue are the bezels.

HMDs

- Head Mounted Displays, today called VR displays.
- Can be tethered to a computer more compute power.
- Or cable free run on a mobile device.
- Stereoscopic + natural panning + natural tracking for realtime computer generated content.
- Stereoscopic + natural panning for filmed content.
- Current issues revolve around resolution (very low) and latency.

Movie

Light table

- Can offer high fidelity.
- Often touch enabled.

- Goal was a seamless display, no panel bezels.
- Based upon two blended high definition projectors.

MONA: Museum of Old and New Art

iDome

- "Invented" in 2002, iCinema (dome) and myself (projection)
- 180 degree horizontal field of view, 135 vertical field of view

Planetarium

- Traditionally planetariums were only able to show stars and constellations.
- Used dedicated optical projection.
- The modern planetarium is more like an immersive digital theatre.
- May have between I and I2 digital projectors. All seamlessly (hopefully) blended together.

AVIE

- 360 degree cylindrical display
- 10m diameter, 3+m high (depends on installation)
- Stereoscopic 3D enabled, special type of stereoscopic panorama.
- Supports 10 people easily, all looking in different directions
 Compare isolation of HMDs to socialisation in AVIE

Movie

EPICyinder

- Enhanced Perception and Interaction Cylinder
- University of New South Wales
- Targeting and funded for medical research
- Specifications
 - Almost 120 MPixels in 3D
 - Almost 360 degrees horizontally, 50 degrees vertically
 - 6.5m diameter, 3m high
 - 56 HD resolution panels, 28+1 node graphics cluster
 - 32+1 channel audio system
 - 12 camera head and device tracking in 3D
- This, to the best of our knowledge is the highest resolution, stereo capable, immersive display in the world.

Current projects

- Ultra high resolution stereoscopic panorama camera
- Atlas of Maritime Buddhism
- Parallax free 360 video camera

Ultra high resolution stereo panorama camera

Right eye

Digital solution

Altas of Maritime Buddhism

- Capturing high quality stereo panoramas and 3D models
- Will eventually tour to ACM (Asian Civilisation Museum), Singapore.
- Will be based around an AVIE cylindrical display system.
- Documents the spread of Buddhism along the maritime silk road.
- Create 3D models by only taking photographs.

Worlds first zero parallax error camera

- 360 video is in high demand for experiences in VR headsets
- Every single 360 video camera available has a fundamental problem.
- Parallax error makes it impossible to create a perfect blend between the camera views.

