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A B S T R A C T

Whole sky spectral radiance distribution measurements are difficult and expensive to obtain, yet important for
real-time applications of radiative transfer, building performance, physically based rendering, and photovoltaic
panel alignment. This work presents a validated machine learning approach to predicting spectral radiance
distributions (350–1780 nm) across the entire hemispherical sky, using regression models trained on high dy-
namic range (HDR) imagery and spectroradiometer measurements. First, we present and evaluate measured,
engineered, and computed machine learning features used to train regression models. Next, we perform ex-
periments comparing regular and HDR imagery, sky sample color models, and spectral resolution. Finally, we
present a tool that reconstructs a spectral radiance distribution for every single point of a hemispherical clear sky
image given only a photograph of the sky and its capture timestamp. We recommend this tool for building
performance and spectral rendering pipelines. The spectral radiance of 81 sample points per test sky is estimated
to within 7.5% RMSD overall at 1 nm resolution. Spectral radiance distributions are validated against libRadtran
and spectroradiometer measurements. Our entire sky dataset and processing software is open source and freely
available on our project website.

1. Introduction

Atmospheric spectral radiance distributions, for ultraviolet (UV),
infrared (IR) and visible spectra, for the entire sky, are often simplified
into a single downwelling irradiance measurement, mainly because
whole sky spectral radiance is difficult and expensive to measure in
real-time and complicated to model. Yet precise radiance distributions
are still very much needed for accurate calculations in real-time ap-
plications of building performance (Hensen and Lamberts, 2012;
Chandrasekhar, 2013; Jakica, 2017), environmental science (López-
Álvarez et al., 2008), photo-voltaic (PV) alignment (Smith et al., 2016),
and physically based rendering (Jakob, 2010; Hosek and Wilkie, 2012;
Satỳlmỳs et al., 2016). Unlike irradiance, spectral radiance is direc-
tional and should be available for any point in the sky, as simulations
are affected by the angle of incidence of spectral sky energy and re-
ceiving surface.

We present a data-driven machine learning approach to estimate
spectral radiance for any point in a clear sky to within acceptable tol-
erances for real-time applications. We use high dynamic range (HDR)
photographs of the sky and validated spectral radiance measurements

captured throughout an entire year by a custom sky scanning frame-
work (Kider et al., 2014), to train models that learn a relationship be-
tween capture time, sky appearance, and underlying energy
(350–1780 nm). The primary contribution of our research is the re-
construction of high-dimensional atmospheric spectral radiance for
every single point in a clear sky, including non-visible spectra (UV and
near IR), given only a low-dimensional digital photograph of the sky
and its capture time. We show that a clear sky photograph can be used
to predict non-visible (and visible) atmospheric radiance energy.

Notable previous data-driven approaches to model skylight include
Tohsing et al. (2014), Saito et al. (2016), and López-Álvarez et al.
(2008), Cazorla et al. (2008a,b). Tohsing et al. leveraged ground-based
sky radiance photographs and a non-linear regression model per wa-
velength to reconstruct only the visible spectrum. Saito et al. used total
ozone column readings, camera color matching functions, and a linear
algebra approach to predict a subset of visible for a single point in the
sky. Cazorla et al. used neural networks, genetic algorithms, and re-
gression models for specific points in the sky. Much of that work was
performed on limited sets of data, and in some cases only a few hours of
single sky cover used for training (Tohsing et al., 2014). Our dataset is
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much more comprehensive. And our methods predict a wider, more
useful spectral range, for every point in the sky. Furthermore, we show
the reconstruction of non-visible energy from photometric inputs.

In this work, four separate regression models are developed through
machine learning, with a combination of input features from correlated
sky imagery and validated spectral radiance measurements. A series of
new experiments are performed to test model effectiveness and effi-
ciency with regards to changes in exposure, sky sample color model,
and spectrum resolution. A tool is developed that uses a single model to
predict spectral radiance distributions for every point of a hemi-
spherical sky, at 1 nm resolution. Spectral radiance distributions are
validated against libRadtran, a validated radiative transfer software
package for atmospheric science (Emde et al., 2016; Buras and Mayer,
2011; Mayer and Kylling, 2005; Kylling et al., 1995; Dahlback and
Stamnes, 1991; Stamnes et al., 1988).

We explain in Section 3.1 that this work focuses on clear skies by
design. In our initial work (Del Rocco et al., 2018), we showed that
regression models were not the best solution for scattered and overcast
skies, despite the fact that one of the models showed promise. We be-
lieve a more complex machine-learning solution is needed to under-
stand the more complicated patterns behind cloudy sky radiance. In
contrast to more traditional atmospheric models, we purposely omit
aerosol optical depth (AOD) and trace gas measurements to test viabi-
lity of our methods today in real-time applications (commodity building
monitoring systems, residential solar installations, rendering pipelines,
etc.), which often do not have access to accurate sky measurements
needed for complex physically-based solutions. Our proposed methods
can accommodate readily available AOD and other atmospheric mea-
surements as training and prediction features. Such features may even
help our models adapt to localized turbidity.

The remainder of this paper is organized as follows. First, related
work is presented in Section 2. Our measurements and engineered data
is detailed in Section 3. We present our methods and experiments in
Section 4, results in Section 5, and validations in Section 6. Finally,
conclusions and future work are presented in Section 7.

2. Related work

Skylight itself has been studied for well over one hundred years
(Strutt, 1871; Mie, 1908). Skylight simulation models typically fall into
one of three categories. Early work often simplified solar and sky
models by simulating luminance distributions and salient color char-
acteristics with simple analytical equations. Later, the atmospheric
science and computer graphics communities, separately and simulta-
neously, proposed brute-force physically-based simulations of light
transport in the atmosphere using the radiative transfer equation (RTE)
(Chandrasekhar, 1950; Mishchenko et al., 2002; Chandrasekhar, 2013).
More recently, in the “big data” era, some researchers have attempted
to model skylight with data-driven approaches, which often measure,
process, and quantify large sets of data and search for correlations,
usually with machine learning approaches. Modern atmospheric mea-
suring systems installed at labs around the world are powerful and
accurate, but often expensive and slow, and thus commodity sky
scanning systems are more feasible for modern building performance
solutions needed today (Butler, 2008; Mazria and Kershner, 2008).

2.1. Analytical methods

Analytical skylight models fit parametric functions to observations
of the sky (Pokrowski, 1929; Kittler, 1994). Such models were stan-
dardized by The International Commission on Illumination (CIE) to
calculate the spatial distribution of skylight, and are based on mea-
surements of luminance, indirect sky irradiance, and direct solar ra-
diance. Early analytical approaches include the Intermediate Sky by
Nakamura et al. (1985) and the UK Building Research Establishment
(BRE) average sky by Littlefair (1981). Lee (2008) studied overcast
skies to find meridional consistencies. Cordero et al. (2013) studied
albedo effect on radiance distributions (both upwelling and down-
welling). One of the most popular analytical models is the all-weather
model by Perez et al. (1993), which formulated a mathematical equa-
tion with five coefficients to model sky luminance. This model was
extended by Preetham et al. (1999) to calculate sky color values by
fitting equations to a brute-force physically-based simulation. Hosek
and Wilkie (2012) made several improvements including ground al-
bedo, more realistic turbidity, and the handling of spectral components
independently. Igawa and Nakamura (2001) and Yao et al. (2015) also
improved the Perez all-sky model. All of these models produce realistic
looking results, but often suffer from inaccuracies (Zotti et al., 2007;
Kider et al., 2014; Bruneton, 2016).

2.2. Physically-based methods

Physically-based skylight methods produce the highest quality re-
sults of simulating skylight. They directly calculate the transfer of solar
radiation in the atmosphere through the radiative transfer equation
(RTE). They also directly calculate the composition of the atmosphere
through Rayleigh and Mie scattering, and polarization. The atmo-
spheric research community developed programs such as 6SV (Vermote
et al., 2006), SMARTS2 (Gueymard et al., 1995), MODTRAN (Berk
et al., 2014), and SBDART (Ricchiazzi et al., 1998), which produce
accurate results, but often at high computational cost unsuitable for
real-time applications. They also tend to focus on luminance and irra-
diance. libRadtran (Emde et al., 2016; Mayer and Kylling, 2005) is a
popular, validated software package with various RTE solvers for at-
mospheric spectral radiance, irradiance, and other solar and sky prop-
erties, and is highly configurable. We use it to validate our model
predictions. Like all physically-based solutions, libRadtran requires
aerosol and particulate parameters and distributions (Hess et al., 1998;
Holben et al., 1998) describing the sky, to produce the most accurate
simulations. An alternative physically-based approach involves even
more intricate, though perhaps even more accurate, multi-scattering
calculations to reconstruct spectral radiance across varying sky covers
(Kocifaj, 2015, 2012, 2009). These calculations require accurate at-
mospheric measurements. Separately, the computer graphics commu-
nity also has developed numerous Monte Carlo based approaches
(Nishita et al., 1993, 1996; Haber et al., 2005; Jarosz, 2008) that merge
the RTE with the rendering equation (Kajiya, 1986). These methods
produce pleasing visual results and often approximate the complicated
scattering calculations with phase substitutions by Henyey and
Greenstein (1941) or Cornette and Shanks (1992).

Nomenclature

Pθ Pϕ( , ) sky point of interest (azimuth, altitude) (degr)
Sθ Sϕ( , ) sun location (azimuth, altitude) (degr)
x y( , ) sky image pixel coordinate

σ standard deviation
SPA sun point angle (°)

ETR extra trees regression model
RFR random forest regression model
KNR k-nearest-neighbor regression model
LNR linear regression model
R2 coefficient of determination score −[ 1, 1]
RMSD root mean squared deviation (%)
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2.3. Data-driven methods

In an increasingly “big data” era, were storage is cheap and data
volume, velocity, and variety continues to increase exponentially, many
scientists have taken a data-driven approach to solving problems
(Gandomi and Haider, 2015; Sagiroglu and Sinanc, 2013; Chen et al.,
2012; Laney, 2001). For modeling skylight, scientists systematically
gather measurements and apply search algorithms to help model and
simulate. This includes the capturing of high dynamic range (HDR)
imagery (Stumpfel et al., 2004), image-based lighting, and irradiance
and radiance measurements, to estimate luminance values for the sky
directly from captured photographs.

The most relevant work to our own comes from Tohsing et al.
(2014), the most comprehensive data-driven approach to date, who
used 1143 separate machine learned regression models (one per color
component (RGB) per wavelength of the visible spectrum
(380–760 nm)) to estimate whole sky radiance. The authors trained and
tested clear and cloudy skies separately and the entire dataset was
captured over a period of 12 days. 113 samples from a 3.5 h window of
a single clear sky day were used for training. Whole sky scans took
12 min to complete, and thus a synthetic image was used for color
sampling. Our data capture was much more comprehensive, spanning
an entire year, accounting for seasonal variation. Skies were captured
under 3 min, avoiding synthetic imagery (Del Rocco et al., 2018). Our
methods predicts a much wider spectrum of energy (350–1780 nm),
including some UV and IR, which is useful for a variety of applications.
We also provide predictions for every single point in a hemispherical
sky image. Finally, as opposed to a system of 1143 regression models, a
single regression model is used to predict.

Saito et al., 2016 improved upon the work of Sigernes et al. (2008)
to estimate sky radiance, specifically “without any training sets,” by using
an equation of total ozone column and raw sky image red-green-blue
(RGB) counts. They focused on the zenith of the sky (single point) and
estimated spectral radiance for a subset of visible wavelengths
(430–680 nm). They too treat clear and cloudy skies separately. A no-
table contribution is the color matching functions, which took into
account camera lens wavelength dependence, vignetting, and CMOS
noise, and were used for cloud detection in Saito and Iwabuchi (2016).
This method should be scaled to include every single point of a sky
image, both clear and cloudy, and validated against a radiative transfer
package.

Artificial neural networks (ANN), genetic algorithms, and pseu-
doinverse linear regression models were used in various projects by
López-Álvarez et al. (2008), Cazorla et al. (2008a,b). They also used a
custom sky scanner. Their models focused on visible spectra with a final
dataset of 40 samples. More recently, Satỳlmỳs et al. (2016) used an
ANN to model certain properties of skylight.

Chauvin et al., 2015 used a custom sky imaging framework for ir-
radiance and cloud detection for the purposes of concentrating solar
plant technology. A noted contribution was their observation of the
importance of the circumsolar region, in opposition of many sky
models, and the central angle between sun position and sky point of
interest, or sun-point-angle (SPA). Their research was used for in-
trahour forecasting to improve solar resource acquisition (Nou et al.,
2018).

Our research: (1) reconstructs the spectral radiance of the sky uti-
lizing high resolution imagery, (2) accounts for seasonal and datetime
variation with captures throughout an entire year, (3) accounts for
fisheye lens warp, (4) predicts a wide, useful spectrum of energy
(350–1780 nm) at 1 nm resolution, (5) predicts non-visible spectrum
energy with indirect visible data (a novelty), (6) does so for an entire
hemispherical clear sky image, (7) tests multiple exposure imagery,
color model, and spectral resolution, (8) considers real-time con-
strained downstream applications of this work, (9) trains and compares
multiple regression models, and (10) validates spectral radiance pre-
dictions against a modern atmospheric radiative transfer software

package.

3. Measurements and data

Measurements in this work come from the sky scanner discussed in
detail by Kider et al. (2014). This framework captured high-resolution
HDR imagery of the sky (8 exposures), along with atmospheric spectral
radiance distributions (350–2500 nm) from 81 sample points in con-
centric circle patterns across the sky. Measurements were taken from
the ground. The sampling pattern is arbitrary, but was designed to
capture a uniformly distributed “skeleton” of measurements across the
sky. The spectral radiance distributions were measured in W/ m2/ nm/
sr with an ASD FieldSpec Pro spectroradiometer through a 1° solid
angle fore-optic (Malthus and MacLellan, 2010), and were validated
against NASA datasets (Kider et al., 2014). The multiple exposure
photographs of the sky were captured in both CR2 (raw) and JPG for-
mats consecutively at 4368 x 2912 pixels with a commodity Canon 5D
digital single-lens reflex (DSLR) full-frame camera with underlying
complementary metal-oxide-semiconductor (CMOS) image sensor, to-
gether with a Sigma 8 mm f/3.5 EX DG circular fisheye lens, and a
Kodak Wratten neutral density filter. JPG compression quality level was
set to 100. It took roughly 40 s to capture all exposures and formats of
photographs of the sky, and we automated the process with libgphoto2
Irradiance was also measured, but ignored for the purposes of this
work. A single exposure sky capture with correlating spectral radiance
measurements is shown in Fig. 2.

All measurements were taken at a single site location, (42.44344,
−76.48163) decimal degrees, on the rooftop of Frank Rhodes Hall,
Cornell University, Ithaca, New York, USA. 453 total sky captures were
taken over 16 days between 2012 and 2013, covering all four seasons,
dawn to dusk, and various sky covers, for a total of over 36000 in-
dividual spectral radiance measurements. Roughly 25% of the captures
consisted of full clear skies (0 octas of clouds), from which 6006 in-
dividual clear sky samples were used for this work. Scattered and
overcast skies were purposely left out of this work to focus our efforts. A
complete table listing of all usable data that we captured can be found
in Del Rocco et al. (2018). This dataset is freely available to the public
through our project website.1

Hemispherical sky coordinates are specified in (azimuth, altitude)

Fig. 1. This figure explains the coordinate space and sky coordinates of mea-
surements used in this work. A single atmospheric spectral radiance measure-
ment (Le λΩ ) is measured at sky coordinates Pθ Pϕ( , ) (azimuth, altitude), taken
from the ground by a custom sky scanning system. 81 such measurements were
taken per sky capture. The sky coordinates of the sun Sθ Sϕ( , ) were computed
with NREL’s solar position algorithm. The central angle between sun location
and sky point of interest is denoted as sun-point-angle (SPA) (Chauvin et al.,
2015).

J. Del Rocco, et al. Solar Energy 204 (2020) 48–63

50



coordinates, where azimuth is an angle Eastward from North, and al-
titude is ( °90 – zenith). Fig. 1 depicts the coordinate system. Photo-
graphs of the sky are vertically flipped due to capture orientation. The
correlation of validated spectral radiance measurements and sky color
is explained in Sections 3.2 and 3.3.

3.1. Sky cover

As mentioned, our entire dataset includes a variety of sky cover
conditions, roughly 25% clear skies, 67% scattered, and 8% completely
overcast. We assessed sky cover manually with our dataset browsing
tool, even though procedural assessment is possible. We used the ca-
tegorization of sky conditions provided by the US National Oceanic and
Atmospheric Administration (NOAA) (Office Of The Federal
Coordinator For Meteorological Services And Supporting Research,
2017), designating skies as clear (CLR), scattered (SCT), and overcast
(OVC). CLR and OVC skies contained 0 and 8 oktas of cloud cover,
respectively. We used SCT for any sky with cloud coverage between 1
and 7 oktas. The distinction of few (FEW) and broken (BKN) skies was
ignored to minimize the number of machine learning models necessary
for downstream applications.

As discussed in our preliminary work (Del Rocco et al., 2018), we
initially trained and tested sky samples of all sky covers (Fig. 3). We
then found that our regression models performed dramatically better
when tested on sky cover specific datasets. Although the models trained
and tested on scattered and overcast skies could have been improved
upon, we surmised for the time being that perhaps more modern
techniques (e.g. deep learning neural networks) were best suited to
model the likely non-linear relationships of scattered and overcast skies
and spectral radiation. The work proposed here is our most refined
approach of using regression models on clear skies specifically. This
includes validation of our predictions with a validated radiative transfer
software package, more experiments, spectral radiance predictions for

every single pixel of a sky photo, the use of multiple exposures (HDR),
the accommodation of lens linearity, sky samples within the cir-
cumsolar region, and more accurate whole sky error plots.

As the title of this work suggests, the regression model approach
presented is currently not unified across all sky covers. The process of
separating clear, scattered, and overcast skies has been discussed in
many prior papers, using metrics such as clear-sky index, R/B ratio,
fractional cloud cover, colormetric and spectral combined metric, etc.
(Arking and Childs, 1985; López-Álvarez et al., 2008; Cazorla et al.,
2008b; Yamashita et al., 2004; Li et al., 2011; Saito and Iwabuchi,
2016; Nou et al., 2018). There are two valid procedural approaches to
using our models. Either categorize the entire sky into buckets of CLR,
FEW, BKN, SCT, OVC (or any other distinction), and use a capture of the
sky with an appropriate model, or separate clear from cloudy samples
from parts of each sky and pass samples to separate models for pre-
diction.

3.2. Lens linearity

Because our work involved mapping hemispherical sky coordinates
to 2D pixel coordinates, and vice versa, it was important to accurately
model the behavior of the fisheye lens employed. In a perfect circular
fisheye lens, often called a ”tru-theta” lens, equal increments in radius
on the fisheye image correspond to equal angle increments of the re-
spective field rays. Actual fisheye lenses typically exhibit some form of
non-linearity, even those lenses designed to be linear (Bourke, 2016).
Although more important with variegated skies (scattered, overcast,
etc.), a measurement difference of even a single degree can result in
sampling pixels in or out of the sun’s corona. The standard ideal lens
equation for mapping hemispherical sky coordinates to 2D center offset
coordinates can be written as:

Fig. 2. A single sky capture consisted of
high-resolution imagery and 81 spectral ra-
diance measurements between 350-
2500 nm (350-1780 nm used for this work).
(a) Shows the sky coordinate locations of the
81 radiance measurements projected onto a
sky image; in other words, where in the sky
each measurement was made. The sun’s lo-
cation and path is depicted in orange. (b)
Shows the correlating radiance measure-
ment values in W/ m2/ nm/ sr between 350
and 1780 nm. The colors of each sky loca-
tion in (a) correlate with radiance distribu-
tions in (b). As expected, radiance mea-

surements taken closer to the sun are higher. The radius of colored circles is not to exact scale with sampled pixel area used in methods described in this work. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Preliminary model results from Del Rocco et al. (2018), showing initial models trained and tested on our entire dataset of sky captures. The regression
approach showed more promise on clear skies than scattered or overcast skies.
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=x y zenith
fisheyefov

azimuth azimuth( , ) 2· ·(cos( ), sin( )).
(1)

The following procedure was used to measure the relationship be-
tween field angle and position on the image:

1. A close and distant vertical feature in the fisheye image was chosen.
The zero parallax position of the lens is the position along the lens
axis where those features stay aligned despite rotations perpendi-
cular to the lens axis.

2. A clear narrow object in the image was chosen as a reference point
and aligned with the center of fisheye image.

3. The lens is rotated in 5° steps from 0 to 90°, and a photograph taken.
4. For each photograph, the distance of the reference point from the

center was measured.

For our Sigma 8 mm f/3.5 fisheye lens, this resulted in the following
non-linear curve (plotted in Fig. 4), which was then used to alter zenith
of sky coordinates ( =r zenith):

′ = + − −r r r r r0.7230 0.0252 0.0499 0.0004325 .2 3 4 (2)

3.3. Sky color sampling

Color at a particular location in the sky is a fairly subjective mea-
sure. What our eyes detect, what instruments measure, and how that
data is processed, differs dramatically. Nevertheless, our research in-
vestigates the relationship between sky color and energy distribution,
and thus a quantitative metric must be used.

To quantify sky color at specific points in the sky, we projected the
bounds of a 1° solid angle (same as fore-optic we used when measuring
radiance) onto the 2D sky images captured with our digital camera
(multiple images for the HDR experiment), and then sampled the pixel
colors with a square convolution of similar width to the radius (Fig. 5).
In other words, when exporting data associated with a sky capture, we
correlate the 81 radiance measurements with 81 pixel samplings of a
sky photo, at the same lens linearity corrected coordinates projected to
2D.

More than a single pixel was used to estimate sky color at each
sampled sky location because the corresponding spectral radiance
measurement was captured within a 1° steridian. To estimate the
equivalent color, we used a common image processing technique
known as convolution, which involves sliding a matrix of weights or
homogeneous values (the kernel) over a set of image pixels in order to
compute a new set of pixels (Parker, 2010). Such convolutions are used
to implement a wide variety of image filters like blurring, edge high-
lighting, etc. We used a Gaussian convolution, in particular, to blend
the pixel colors together, weighting pixels closer to the center higher
than pixels near the edges of the projected bounds.

We note that a square convolution does not account for all pixels in
a projected circular area exactly; in fact, the projected circle becomes
an increasingly oblong ellipse as altitude decreases. A rectangular
convolution kernel would likely provide better coverage of the pixels in
the projected bounds. Our kernel was chosen for real-time efficiency
and overlap with existing image processing techniques and libraries,
most of which use square kernels. The weights of our Gaussian kernels
were generated with the following equation (Fisher et al., 1996):

=
−

+

kernel x y
πσ

e( , ) 1
2

· ,
x y

σ2 2

2 2

2
(3)

with kernel dimensions relative to the bounds of the convolution, and a
standard deviation (σ) of half the radius.

3.4. Raw vs. digital positive

As mentioned, we captured photographs in a Canon CR2 (raw)
format and a more traditional, camera processed, compressed JPG file
format. Raw images contain much more capture information in a pre-
interpolated format, before debayering, noise filtering, color space
conversions, gamma correction, etc. In our previous work, we worked
with the compressed JPG captures, which were smaller and faster to
process (Del Rocco et al., 2018). For this work, we strove for accuracy
of recorded color values and interpolated the raw photographs into
uncompressed TIFF files, using camera white balance, but no other

Fig. 4. This figure visualizes the linearity of our
lens, or the differences (“lens warp”) between an
ideal fisheye lens and the lens we used in this work.
(a) Plots the altitudes 12.1151°, 33.749°, 53.3665°,
and 71.9187° (altitudes of radiance measurements)
for our actual lens (magenta) vs an ideal fisheye
lens (white). The deviation, in terms of number of
pixels, is not insignificant. The computed location
and path of the sun, after lens correction, is over-
laid (orange). (b) Plots sample points from a lens
linearity calibration experiment from our actual
lens (solid line) vs an ideal fisheye lens (dashed
line). The sample points of the solid line were used
to fit Eq. 2. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Here we show the standard radiometry of measuring the steridian area
of a single sky sample, one of 81 spectral radiance measurements at sky co-
ordinate Pθ Pϕ( , ) (azimuth, altitude), whose coordinate is then projected onto a
2D photo of the sky. (a) Shows the captured steridian area projected onto the
sky image, the bounds of which contain the pixels of interest for that sky
sample; (b) shows the weights of a 5x5 Gaussian convolution matrix which is
applied to the pixels in those bounds to compute a final color for that sky
sample. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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post-processing options that digital cameras use to produce images
closer to what humans see (e.g. gamma correction, additive brightness,
exposure shift, etc.). We used rawpy to read and process the raw images
(Riechert, 2018; LibRaw, 2018). Fig. 6 shows the difference. Our pre-
vious work already showed that it is possible to infer a relationship
between sky appearance and spectral radiance using compressed ima-
gery. The consistency of raw photograph interpolation may be more
crucial than the specific parameters used.

4. Methods and experiments

The research question for this work asks whether it is possible (or
not) to estimate the atmospheric radiance distribution of a clear sky
given only a picture of said sky and its capture timestamp. In other
words, is there a relationship between what a commodity camera sees
in the sky, the time of day, and the underlying spectral energy, despite
the fact that we know solar radiation scattering is a complex process
where energy is absorbed and scattered by atmospheric particles at
certain wavelengths? Is it possible for mere photos of the sky to give
acceptable/useful estimates of energy for use in downstream applica-
tions? In this work, we propose a data-driven method (machine
learning on a dataset of measurements) to help us search for such a
relationship. But given the sheer magnitude of machine learning ap-
proaches (statistical models, artificial neural networks, support vector
machines, etc.), we limit the scope of this research to regression models.
Predicting a curve (i.e. not a single output) is more of a regression
problem, as opposed to classification or clustering.

A supervised approach is natural, given our measurements and
problem formulation. Given photos of skies, their capture timestamp,
and 81 corresponding spectral radiance measurements (curves/dis-
tributions) per sky, is there a correlation? The radiance measurements
are natural ground truths for what a camera sees at those 81 points in
the sky. As mentioned, we focused on clear sky measurements, speci-
fically 6006 samples (or ~17% of our entire data set), where each
sample represented a single point in a clear sky coupled with capture
timestamp and corresponding spectral radiance measurement. In our
initial approach (Del Rocco et al., 2018), we culled all samples within a
20° circumsolar region, like prior authors Saito et al. (2016) and
Tohsing et al. (2014). The work of Chauvin et al. (2015), who in-
vestigated the radiance profile within the circumsolar region, en-
couraged us to use all valid sky samples. Samples closer to the sun are
important, as the bulk of energy comes from this area of the sky.

We developed a viewer/ exporter/ converter tool to manage our
large dataset and export subset collections of data (Del Rocco et al.,
2018) and (Fig. 7(1b)). Our collection of exported clear sky samples
was then partitioned into an 80:20 train/test:holdout ratio, where

samples from four arbitrary skies (Table 1), selected at random, were
kept in the holdout partition. The train/test partition was then rando-
mized with the same pseudorandom seed to keep the training and
testing data consistent across runs, and 10-fold cross-validation was
utilized to allow us to divide this partition into training and testing
separately while tuning the models. It was also used to dampen the
effects of outliers on subsets of data (Picard and Cook, 1984; Kohavi
et al., 1995). At no point in the tuning of models was the holdout data
used for testing. These techniques are often employed to help minimize
overfitting and data leakage.

Each sky sample of Fig. 7(1c) consisted of a vector of input and
output features. From the raw measurements of capture timestamp,
sample azimuth and altitude, sky color, and spectral radiance mea-
surement, we engineered and computed the additional features: sun
azimuth and altitude, sun-point-angle (SPA), quarter, month, week, day
and hour. The capture timestamp was initially included as a single in-
tegral feature, but was later “binned” (Macskassy and Hirsh, 2003) into
discrete datetime groupings to help the models better account for sea-
sonal and diurnal variation in clear sky turbidity (Eltbaakh et al., 2012).
Sun position was computed with the solar position algorithm provided
by the US National Renewable Energy Laboratory (NREL) (Reda and
Andreas, 2004). SPA comes from the insights of Chauvin et al. (2015),
and was not included in our initial work.

Various exploratory data analysis (EDA) techniques (Fig. 9) were
employed to gauge the significance of each possible input feature, in-
cluding: histograms, correlation matrix, collinearity matrix, outlier
detection, and feature importance (Yu, 1977). EDA scores are uni-
variate and calculated by scikit-learn directly (Pedregosa et al., 2011).
For correlation and collinearity, in general, the more correlated input
features are to the output, the better they will perform as predictors, but
the more correlated they are to each, the more overlap. F-measure (f-
score) is the ratio of harmonic mean precision and recall, often used as a
prediction effectiveness measure, is well documented in statistics lit-
erature, and included in most machine learning libraries (Cooper, 1973;
Van Rijsbergen, 1979; Chinchor, 1992; Sasaki, 2007; Pedregosa et al.,
2011).

As Fig. 9 shows, all datetime features are naturally correlated, but
equally important. By binning the datetime, we hope the model cap-
tures seasonal and time of day variation, which has been shown to af-
fect turbidity ((Eltbaakh et al., 2012)). The three components of a single
color sample (a Gaussian convolution of pixels within a 1° portion of the
sky) are also naturally highly correlated. The hour of day feature likely
correlates to sun azimuth more than altitude because on a 2D projected
fisheye photo of the sky, the sun’s azimuth varies more than its altitude.
Sky sample color components were found to be the most important
features. When HDR data was investigated, longer (brighter) exposures

Fig. 6. 05/27/2013 09:00 1s exposure of sky as a more traditional, camera processed, compressed JPG (a), and as a minimally processed, uncompressed TIFF (b). (a)
Approximates what humans see when looking at the sky, but (b) is more accurate in terms of what the DSLR CMOS sensor measures.
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were found to be more significant than shorter (darker) exposures. In-
itially, sample azimuth and altitude were of some importance, but after
SPA was added, both sample azimuth and altitude scored as much less
important, likely because SPA is a combination of both sun and sample
locations in a single feature. The sample altitude feature was dropped
completely. Sample azimuth was retained because tests without it af-
fected results slightly (~2% RMSD). As Fig. 9(c) shows, 81 samples per
capture evenly distributed across the sky resulted in a nearly flat dis-
tribution of sample azimuth values. The final input and output features
of each sky sample used by our models are shown in Fig. 8.

More than 10 separate regression models were trained and tested,
including: linear, Ridge (Hoerl and Kennard, 1970), Lasso (Tibshirani,
1996), ElasticNet (Zou and Hastie, 2005), Lars, KNN, RandomForest
(Kocev et al., 2013), ExtraTrees (Geurts et al., 2006), etc. Initially,
WEKA toolkit (Hall et al., 2009) was used to discover possible candidate
models, but ultimately all machine learning models were configured
and processed with scikit-learn in Python (Pedregosa et al., 2011). In-
itial tests of these models encouraged us to pursue the ones with pro-
mise. Many of the models forced a single decimal output value (not a
vector), which didn’t align with our approach; we are attempting to
reconstruct a curve, or vector of radiance values per wavelength. We
chose a proximity based model, like k-nearest-neighbors (KNN), and a
decision tree based (ensemble) model to focus on. We also included a
standard linear regressor (LNR) as a baseline, which we assumed would
not perform well given the nature of the data and problem. Decision
tree models implement a set of “if-then-else” rules internally for both
training and prediction, and result in very large model files. We know
that decision tree estimators are more prone to overfitting than any
other regression model, so to further address overfitting, we used a
Random Forest Regressor (RFR) specifically, which harnesses random-
ness to decrease variance in lieu of some bias (Kocev et al., 2013). Extra
Trees Regressor (Geurts et al., 2006) introduces even more randomness
and a larger trade off to combat overfitting. The final collection of
tuned regression models include a linear regression (LNR), k-nearest-
neighbors (KNR), random forest (RFR), and extra-trees (ETR). For all
four of our models, tuning was done mostly automatically with scikit-
learn’s GridSearch algorithm, though some hyperparameters were
tuned manually, including the number of trees and maximum tree
depth of the decision tree models.

Four separate error metrics were used to evaluate the performance

of models, including: coefficient of determination score (R2), mean bias
deviation (MBD), root mean squared deviation (RMSD), and ratio of the
measured and predicted radiance curves. MBD and RMSD come from
Iqbal (2012):
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where N is the number of spectral radiance distributions considered, y
the predicted distributions, and x the measured ground truth distribu-
tions. Recall that each distribution is a vector of radiance values be-
tween 350 and 1780 nm of the electromagnetic spectrum. Prior authors
used MBD for single wavelength results (Cazorla et al., 2008a; Tohsing
et al., 2014), but we found RMSD to be more representative of the re-
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despite the name R2.
In addition to our dataset tool, we developed a framework of Python

scripts to send datasets through our machine learning pipeline of
training, final testing, and plotting. The main script takes parameters
such as: model type, dataset of sky samples, pseudo-random number
seed, number of cpu cores to use, cross-validation amount, and model-

Fig. 7. Our method is split into two parts, (1) offline
learning to produce a model for (2) real-time ap-
plication use. (a) Is described in Kider et al. (2014).
(b) Is our viewer/exporter tool used to correlate,
inspect, and export datasets. (c) Is the clear sky da-
taset used for this work; each sample of which
contains the features depicted in Fig. 8. (d) Consists
of the methods described in Section 4. While testing
on the non-holdout portion of our dataset, we
identified data anomalies, incorporated lens line-
arity equations and engineered new features, which
resulted in data being reexported (depicted as tran-

sition from (d) back to (b)). (e) Represents one of our four final regression models produced from this work. In (2), the input features of 81 sky samples from each of
our four holdout test skies (Table 1) are passed through a model to predict spectral radiance distribution, which are compared to their corresponding ground truth
measurements to produce error plots and validated against libRadtran. Finally, a whole sky image can be passed through a model to produce a spectral radiance map
(sradmap), where each “pixel” is a spectral radiance distribution.

Table 1
Four holdout test skies selected at random. Table of all measurements listed in
Del Rocco et al. (2018).

Date Time Part of Day Season Sky Cover

05/26/2013 15:15 Afternoon Spring CLR
05/27/2013 10:15 Morning Spring CLR
07/26/2013 13:15 Midday Summer CLR
09/24/2013 15:39 Afternoon Fall CLR

Fig. 8. A single sky sample consists of 12 input features and 1430 output fea-
tures (the spectral radiance curve between 350-1780 nm). Capture timestamp
was binned into separate features to help capture seasonal variation. Sun azi-
muth and altitude were computed via NREL sun position algorithm. Sample
azimuth and altitude were inherent to sky scanning logic, yet EDA found them
to be of little importance. The three color features are components of single sky
color per sample, relative to color model used (e.g. RGB, HSV, etc.). (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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specific hyperparameters such as polynomial expansion amount, max-
imum tree depth for decision tree pruning, etc. All source code for
dataset tool and pipeline is 100% cross-platform, open-source and
freely available to the public through our project website.1

4.1. High-dynamic range imagery

Simultaneously capturing the sun and sky with photography is dif-
ficult due to the range of illumination and intensity of the sun vs. sky, as
well as the temporal changes that occur. We followed the sky capture
approach of Stumpfel et al. (2004). We took eight to nine photographs
(depending on the time of day) to capture ~17 stops of dynamic range.
Fig. 10 shows the difference in exposures captured; the top row (f/16
aperture) if best for the solar region and intensity of the sun; the bottom
row (f/4 aperture) is best for the indirect skylight.

This experiment was designed to test the effectiveness of using HDR
imagery (multiple exposures) vs. a single exposure of the sky. For each
sky sample, we used the pixel color values from exposures 5-8 (f/4
aperture) as input features for model training and prediction. Exposures
1-4 were ignored for this experiment. Although there are algorithms to
merge multiple exposures into a single image for sampling, we simply
sampled each exposure separately and used each sampled color as a
separate input feature. Future work could include a merged color fea-
ture.

4.2. Color model

Colors are qualia for combinations of electromagnetic energy within
the range of wavelengths visible to humans (the visible spectrum). The
human eye detects energy with the use of retinal rods and cones and the
brain merges the results into what we call a color (Kinney, 1958).
Modeling the values of these colors is a field of research in and of itself
(Koenderink, 2010). And yet, we are attempting to estimate spectral
radiance using color values as a primary feature. This begs the research
question: which color model best represents the underlying energy?
Digital all-sky cameras typically store measurements with trichromatic

RGB color models (e.g. sRGB, Adobe RGB, ProPhotoRGB, etc.), but do
so mostly for historical reasons relating to technology. There are a
variety of other tristimulus color models that attempt to capture more
of the color space detectable by the average human (Poynton, 1995;
Stone, 2015), many of which derive from the CIE 1931 RGB and XYZ
color space definitions (Wright, 1929). However, it is unclear which
model is most beneficial for machine learning algorithms processing sky
images.

For this experiment, we compared the overall training and pre-
dictive effectiveness of our models while only changing the color model
used for each sky sample’s color feature. Four separate color models
were tested: sRGB (Stokes et al., 1996) (the default), HSV (Smith,
1978), HSL (Joblove and Greenberg, 1978), and LAB (Robertson et al.,
1977). All other features were fixed. Because our commercial digital
camera captured skies in an sRGB format, we then converted to the
other color models using algorithms provided by the Python colormath
module. The resulting datasets were fed through our machine learning
pipeline separately.

4.3. Spectral resolution

This work is intended to be used in a real-time setting, both simu-
lated and cyber-physical, therefore model size and processing speed is
important. For applications that predict a general quantity of energy in
certain parts of the spectrum, it may be reasonable to limit the re-
solution of spectral data used during model training and prediction.
Certainly, the visual difference and area under the curve (amount of
energy) between a 1 nm and 10 nm resolution curve is not significant. A
spectral resolution experiment was designed to find the smallest model
and dataset that still predicted with acceptable accuracy, by training
and testing models using spectral resolutions of 1, 5, 10, 15 and 20 nm.
Note that some pure spectral colors exist entirely within a 15 nm range,
and therefore resolution should not be diminished too much if color
information is important. Fig. 11 shows the visual difference of the five
resolutions for a single measured radiance distribution. Depending on
the downstream application, there is still plenty of useful information at
lower resolutions.

This experiment was run on a Dell XPS 8920 PC with Intel 4 Core i7-

Fig. 9. Plots of individual machine learning features, including histograms for (a) sun azimuth, (b) sun altitude, (c) sample azimuth, and (d) SPA. (e) Shows the
univariate correlation matrix of the features. Datetime components, color components, and hour of day with sun azimuth are all naturally correlated. (f) Shows an
estimation of importance (significance to prediction) of each feature. (d) Was likely more significant because it combined the positions of both sun and sample points
into a single feature. After SPA was included, sample azimuth and altitude became less important and altitude was discarded entirely. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

1 https://spectralskylight.github.io.

J. Del Rocco, et al. Solar Energy 204 (2020) 48–63

55

https://spectralskylight.github.io


7700 K 4.20 GHz CPU and 16 GB of RAM. The operating system was
x64-bit Microsoft Windows 10 Enterprise. All manually executable
applications (i.e. ignoring operating system services) were closed at the
time of the experiment. Five runs were executed per resolution size and
the timings averaged.

4.4. sradmap

Downstream applications of this work may need spectral radiance
estimations for the entire hemispherical sky. Ideally, our models will
generalize across the space between the sky samples used for machine
learning. This involves some interpolation or scaling of outputs between
the learned skeletal space provided by our ground truth measurements
and the entire sky. If our models do not have this ability, then usage is
limited to the 81 coordinates used during measurement. Obviously the
higher resolution a sky scanning pattern is, the more accurate predic-
tions will be across the sky.

To provide whole sky predictions, the same input features shown in
Fig. 8 can be collected for any pixel of a sky image, and then fed
through a single one of our models to produce a lookup file (map) with
radiance predictions per pixel. We call this resulting file a spectral ra-
diance map (sradmap). Although the primary purpose of these files is to
provide a map between pixel location and spectral radiance prediction,
each prediction can be summed, normalized, and plotted against a
false-color map to help visualize the topology of the data.

The name sradmap is an homage to radmap by Anselmo and
Lauritano (2003), a supplementary tool for the daylight simulator
RADIANCE (Ward, 1994). In the building performance space, our
sradmap generator can be integrated into daylight simulators, energy
modelers, and parametric design tools like RADIANCE, EnergyPlus
(Crawley et al., 2001), SUSTAIN (Greenberg et al., 2013), and Ladybug
Tools (Roudsari et al., 2013). In the computer graphics (rendering)
space, sradmaps can be sampled from renderers like Mitsuba (Jakob,
2010) or Disney’s Hyperion (Burley et al., 2018), for use in scenes with

Fig. 10. 8 exposures were taken to account for high dynamic range of sun + sky photography. f/4 aperture captures (5–8) were used for this work. 1 s exposure (7)
was used for non-HDR experiments. Yellow squares highlight sun location.

Fig. 11. 05/26/2013 15:15 sample 24 (90° azimuth, 12.12° altitude) plotted at
5 different resolutions, 1, 5, 10, 15 and 20 nm, labeled accordingly. The re-
solution of spectral radiance distributions can be reduced depending on the
downstream application.

Fig. 12. Model results of predicting the 81 sample point locations for each of the four holdout test skies listed in Table 1. The final regression models are extra-trees
(ETR), random-forest (RFR), k-nearest-neighbor (KNR) and linear (LNR). ETR performed the best, with a total error of 4–7.5% RMSD across all 81 sample points. As
expected, LNR was by far the worst performing. Note the similar results of using JPG captures versus minimally-processed, near raw TIFFs.
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natural daylighting.

5. Results

Three of the four final regression models (ETR, RFR, KNR) resulted
in very high R2 scores and acceptably low RMSD error on all holdout
test skies listed in‘testskies. As expected, the baseline LNR model re-
sulted in relatively poor predictions across all test skies, with an overall
error of 14-24% RMSD. By contrast, ETR resulted in 4-7.5% RMSD. For
test sky 07/26/2013 13:15, three of the four models predicted within
4% RMSD. In general, the tree-based models (ETR and RFR) perform
better than the nearest-neighbor model (KNN). RMSD results for all
models on each test sky are shown in Fig. 12. As mentioned in section
Section 4, the sample azimuth feature affected results by 1-2% RMSD,
but otherwise scored as unimportant, and in fact its effect is within the
standard deviation of error. We believe the sample azimuth feature
could be safely dropped as a feature.

Fig. 13 shows a comparison of all 81 measured and ETR predicted
radiance distributions, their standard deviations, and overall averaged
ratio between measured and predicted on test sky 05/27/2013 10:15.
The difference in standard deviations of measured and predicted is
minimal, and the averaged ratio is near 1.0 for the majority of the
spectrum (350-1780 nm). Note the erratic error in the ratio graph re-
sides within an H2O and CO2 absorption band, where atmospheric ra-
diance is extremely small (Lacis and Hansen, 1974), and measurements
are susceptible to noise.

For the same holdout test sky (05/27/2013 10:15), Fig. 14 shows
ETR prediction error across the entire hemispherical sky, and highlights
the two worst spectral radiance predictions (23.63% and 21% RMSD).
These two measurements occur near the sun’s corona, where radiance
values are traditionally higher and more erratic than the rest of a clear

sky. Two other predictions selected at random are shown for compar-
ison. A vast majority of the 81 samples are predicted to within 1%
RMSD. Note that even with “high” error, predicted curves align with
ground truth measurements in terms of shape. The models therefore
have learned the wavelength relative intensities of the sky in ac-
cordance with capture time, sun location, etc. This is consistent with
nearly all predicted results; while the magnitudes per wavelength
sometimes deviate, the general shapes each predicted curve is accurate.

Although we were expecting some insight from providing multiple
exposures of sky images, results seem to indicate that HDR data, at least
for clear skies, does not improve model prediction. All HDR runs re-
sulted in very similar error to non-HDR runs. Similarly, differences in
results between 0.25 s, 1 s, and 2 s exposures were also insignificant.
We believe this may be because clear sky color changes are so “uni-
form” throughout the day, that multiple exposures lack significance. In
other words, all provided exposures may have had the same color
change trends. We suspect that HDR data will be more significant in the
reconstruction of spectral radiance for scattered and overcast skies, as
the color variations of clouds are less uniform across exposures.

Results of our color experiment (Fig. 15) seem to indicate that color
model is irrelevant to our method. This implies that our method can be
used with any representation of color, as the trends in color across the
sky are similar regardless of format. It is unclear if using color data
initially captured in an sRGB format somehow restricted the range of
the other color models after conversion. In other words, would initially
capturing the sky in a color model that maps to a larger color space be
better?

The results of the spectral resolution experiment (Fig. 16) show the
benefits of decreasing spectral resolution from 1 to 5 nm. Model sizes
(particularly the large ensemble models), as well as model training and
prediction times, decrease significantly. The improvements in

Fig. 13. Whole sky results for holdout sky 05/27/2013 10:15 with ETR model. No ground truth sky samples from this capture were used for training. (a) and (b)
Show the 81 measured and predicted spectral radiance distributions; (c) shows the standard deviation from mean for both measured and predicted distributions; and
(d) is the overall ratio between the two. Note the error in the ratio is within the absorption band near 1350 nm, where radiance is extremely small.
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prediction accuracy are likely due to the radiance curve being more
smooth, i.e. fewer peaks and valleys for the regression model to learn,
as well as a simpler prediction problem in general, i.e. fewer outputs to
predict. The size of the training dataset also decreases with reduced
resolution, but that is eclipsed by the largest model sizes. Beyond 5 nm
resolution, further reductions result in diminishing returns. This is an
important find for real-time applications, which may operate on limited
embedded hardware.

We note here that results between the minimally processed, un-
compressed TIFF sky images and traditional, camera processed, com-
pressed JPG sky images, were roughly the same (Fig. 12). TIFF data
resulted in only slightly better results (~1%) on some skies, though that
may be within the standard deviation of prediction error and machine
learning random fluctuation. In terms of storage space and processing,
the TIFF images (~35 MB) are roughly 15 times larger than the JPG
images compressed with quality level 100 (~2.5 MB). Given the similar
results, we recommend the use of JPG captures for real-time applica-
tions of our method.

Spectral radiance files (sradmaps) are the culminating whole sky
output of our methods. They are generated by extracting features per
pixel of test skies (Table 1) and feeding them through any one of our
models. Linear scale false-color visualizations of ETR model predicted
sradmaps are shown in Fig. 17 and Fig. 18. Test sky images were first
scaled down to a resolution of 333x333 pixels, to anticipate real-time
processing speeds. sradmap generation, visualization, and logged
output took ~20 s to complete on the same machine specified in Section
4.3; embedded hardware would likely take longer. Visualization of
sradmap and logged output are not necessary for real-time applications.

6. Validation

First, no samples from our holdout test skies (Table 1), chosen at
random, were used during training or preliminary testing of any model.
Machine learning projects often use this method to validate a model’s
ability to generalize over unforeseen data. The results presented in
Fig. 12, Fig. 13, and Fig. 14 show that our models have this ability. The

Fig. 14. ETR results of four radiance predictions on holdout test sky 05/27/2013 10:15. (a) Shows the camera processed JPG sky capture for convenience (the model
was trained on TIFF data). (b) Shows RMSD error across the entire sky. Radiance for samples (11), (56), (39) and (74) are pinpointed at their location in the sky.
Samples (39) and (74) were the two worst predictions, with RMSD errors of 23.63% and 21% respectively.

Fig. 15. Sky color model made little to no difference in training and prediction results. (a) and (b) Show RMSD results on 07/26/2013 13:15 and 09/24/2013 13:15
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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results of our additional experiments show that our method is robust
against implementation details such as image compression, exposure,
and color model.

Next, the sradmaps presented in Fig. 17 and Fig. 18 are the result of
using every pixel per test sky. These maps demonstrate that our models
have the ability to generalize across the entire hemisphere (i.e. predict
spectral radiance for every point in the sky) even when trained on a
mere skeleton of samples (81 concentric 1° steridians). Note that most
of the sky is unaccounted for by the skeleton, including points beyond
the variance of sun and sky coordinates. sradmaps contain predictions
for the entire sky.

Finally, we compare our ETR model predictions along side our
ground truth measurements, with the radiance distributions computed
by libRadtran (Emde et al., 2016), a popular, validated radiative
transfer equation (RTE) software package that uses a variety of solvers
developed in collaboration over decades and published in peer-re-
viewed outlets such as: the Journal of Quantitative Spectroscopy &
Radiative Transfer, Atmospheric Measuring Techniques, Atmospheric
Chemistry and Physics, Applied Optics, etc. MYSTIC (Buras and Mayer,
2011; Mayer, 2009; Mayer and Kylling, 2005) and DISTORT (Buras and

Mayer, 2011; Dahlback and Stamnes, 1991; Stamnes et al., 1988) are
the two primary comprehensive equation solvers which have been va-
lidated in multiple international model comparison studies (Emde et al.,
2015; Kokhanovsky et al., 2010; Cahalan et al., 2005). Since 2005, li-
bRadtran has been cited by hundreds of peer-reviewed publications.
libRadtran was configured the same for all four holdout test skies. In
other words, no sky-specific data (atmospheric measurements, aerosol
databases, parameters, or ranges) were specified per test sky - we used
the default configuration. Fig. 19 and Fig. 20 show that libRadtran
spectral radiance for three of our four holdout test skies were in
alignment with both ETR model predictions and ground truth mea-
surements. However, for test sky 07/26/2013 13:15, libRadtran de-
viates from both ETR predictions and ground truth measurements
(Fig. 21). All tested samples for this sky show similar deviations in
magnitude, but not curve shape. As mentioned, libRadtran requires
accurate atmospheric data for its calculations. Because such data was
not configured, and because our predictions are closer to ground truth
measurements, it is possible that our ETR model learned the sky specific
atmospheric conditions libRadtran needed in order to compute accu-
rately. In particular, we note the cirrus clouds along the horizon, which
might indicate ice crystals in the atmosphere, and account for devia-
tions between data-driven predictions and physically-based model cal-
culations.

Fig. 16. Limiting resolution to 5 nm drastically decreases model size, improves
computation speed, and even increases prediction success, likely because the
prediction problem becomes simpler with 1/5 the number of radiance values to
predict. Further reductions yield diminishing returns.

Fig. 17. Columns (1-4) are the holdout test skies in
Table 1, in respective order. Rows (a) and (b) show
traditional, camera processed JPG and minimally
processed TIFF captures, respectively. Row (c)
shows the sradmap visualizations generated for skies
in row (b); we use our ETR model to predict spectral
radiance (350-1780 nm) for every pixel of test sky
image, sum the radiance distribution, and visualize
with a false-color map. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 18. False-colored sradmap visualizations for holdout test sky 07/26/2013
13:15. Each pixel plotted is a summation of an entire spectral radiance dis-
tribution (350–1780 nm). There is no significance to the summation algorithm;
it is simply used to visualize the data.
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7. Conclusions

Whole sky spectral radiance distributions are needed for accurate
computations in a variety of applications, and yet they are often over-
simplified. Real-time capable models are needed to estimate them to
within acceptable tolerances. We presented a solution that: (1) took
photographs of the entire hemispherical sky and measured the in-
coming radiance at various points, (2) used those measurements and
modern machine learning methods to train regression models, and (3)
used those models to predict atmospheric spectral radiance (350-
1780 nm) at 1 nm resolution for the entire sky, given a photo of a clear
sky and its capture timestamp, in ~20 s of processing time, making the
solution viable for real-time applications. Our whole sky prediction
error, for all four holdout test skies, none of which were used for
training, was below 7.5% RMSD, and most of the predicted spectral
radiance distributions were in line with libRadtran.

Our results show that image compression, color model, and ex-
posure of clear sky imagery have little to no effect on our method. This
implies that our solution is robust and less likely to be affected by
implementation details. We also showed that our models have the
ability to generalize across the hemispherical space between measured
sky samples, allowing for atmospheric spectral radiance predictions for
every point in a sky image.

Our trained models can be used as-is, with similarly exposed and
oriented sky photos. And our methods can be reproduced to train
models using new datasets. Various sky scanning systems exist which
can be employed to provide regional training data. Existing correlated
sky imagery and spectral radiance datasets from around the world can
(and should) be used with our method. Once normalized, such com-
prehensive datasets could lead to even more robust models (e.g. more
variations of sky turbidity). As mentioned, aerosol data can also be

included as training and prediction features, supplied from local
building sensors, GOES satellite measurements, and/or triangulated
atmospheric measuring station data. Site location coordinates and/or
elevation could also be investigated as input features when using multi-
site data. More spectral radiance measurements within the circumsolar
region would also likely improve accuracy (clear or cloudy sky), as the
bulk of the energy is accounted for within that region of the sky. All
research in this area could benefit by a scanning pattern that accounts
for this.

Although many downstream applications of our research are pos-
sible, one immediately viable option is a building monitoring system
equipped with all-sky camera that adjusts smart glazing and kinetic
facades in response to spectral radiance across the entire non-occluded
sky. Such a system would automatically harness (or attenuate) light and
heat with more fine-grain control and accuracy than one that operates
on a single downwelling measurement, and would be much more af-
fordable and efficient than a live, continuously operating sky scanning
system. As mentioned, various procedural processes can be applied to
distinguish clear, scattered, and overcast skies, so that pixels and image
regions can be passed to appropriate models for spectral radiance
prediction. Cloud detection research regularly separates clear from
cloudy portions of skies. We hope our research motivates the building
performance community to further refine such a system. We also hope
that the graphics (rendering) community notices the useful of our
sradmap tool. The predicted spectral radiance distributions can and
should be used in spectral renderers (the future of rendering) to provide
the most accurate natural day-lighting scenes.

Further work will focus on scattered cloudy skies. Scattered skies
account for the bulk of our publicly available dataset (63%), and in
general is more complicated to model. More modern, complex machine-
learning techniques, such as neural networks, are likely necessary to

Fig. 19. Spectral radiance at (33.75° azimuth, 12.12° altitude), circled, for two of the holdout test skies in Table 1. Spectroradiometer measurement, ETR model
prediction, and libRadtran estimation plotted.

Fig. 20. Spectral radiance for two sky samples of holdout test sky 05/27/2013 10:15. Spectroradiometer measurement, ETR model prediction, and libRadtran
estimation plotted.
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model the complex non-linear relationships of scattered skies. Simply
throwing our entire dataset (clear, scattered, and overcast data) at a
neural architecture search (NAS) deep learning neural network infra-
structure, we achieved an 83% R2 score, suggesting there is potential
for a unified machine learned model. More investigation is needed to
find the right network configuration to handle this problem. We also
believe that HDR data will have more of an impact on cloudy versus
clear skies, because the color gradients are not nearly as uniform.
Additional work should include improving our Gaussian weighted color
sampling with rectangular (as opposed to square) convolution kernels,
to capture the projected solid angle area (ellipse) precisely.

Portions of this work were presented at SPIE Optics and Photonics
for Information Processing XII (Del Rocco et al., 2018).
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