
JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.1 (1-8)

Computer Physics Communications ••• (••••) •••–•••

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

qwViz: Visualisation of quantum walks on graphs!

Scott D. Berry a,∗, Paul Bourke b, Jingbo B. Wang a

a School of Physics, The University of Western Australia, Crawley, WA 6009, Australia
b iVEC at The University of Western Australia, Crawley, WA 6009, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2011
Received in revised form 6 June 2011
Accepted 7 June 2011
Available online xxxx

Keywords:
Quantum walk
Visualisation
OpenGL
Graph drawing
3D graphics

qwViz is a software package for interactive visualisation of the time-evolution of quantum walks on
arbitrarily complex graphs. The package is written in C and uses OpenGL to generate graphics in real-
time. The qwViz package can be used to directly simulate discrete-time quantum walks on undirected
graphs when provided with the adjacency matrix of the graph. For more detailed studies, qwViz can
also be used to visualise externally generated quantum walk data written in an XML-based file format
(QWML). Various aspects of the visualisation can be customised and manipulated in real-time, allowing
quantum walk dynamics to be probed at various length and time scales.

Program summary

Program title: qwViz
Catalogue identifier: AEJN_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJN_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public Licence version 3
No. of lines in distributed program, including test data, etc.: 42881
No. of bytes in distributed program, including test data, etc.: 97152
Distribution format: tar.gz
Programming language: C
Computer: 32-bit and 64-bit workstation
Operating system: Linux, Mac OS X 10.5 (and later)
RAM: Depends on size of graph, typically less than 50 MB
Classification: 4.15, 14
External routines: OpenGL, GLUT, Graphviz [1]
Nature of problem: Simulation and visualisation of quantum walks on arbitrarily complex undirected
graphs.
Solution method: The program uses OpenGL to produce 3D visualisations of time-dependent probability
distributions arising from quantum walks on graphs. Graph layouts are automatically generated using
Graphviz libraries.
Restrictions: Graph layouts are two-dimensional, with the third spatial dimension being used to represent
the probability of finding the quantum walker at a certain location.
Unusual features: The software can be used in active or dual-stereo modes for 3D visualisation of quantum
walks. Images and image sequences for movies can be exported in TIFF and TGA formats.
Additional comments: Examples of various input files and an XML schema are provided. Source codes
written in C and Fortran are also supplied for generating QWML files from external quantum walk
simulations.
Running time: Computing quantum walk data and graph layout for a 500-step quantum walk on a fifth-
generation Sierpinski gasket (366 vertices) took less than 2 seconds on a 2.53 GHz Intel Core 2 Duo
processor with 4 GB of RAM and 3 MB L2 shared cache under Mac OS X 10.6.6. The same simulation for
a hyper-branched fractal with 1331 vertices took less than 25 seconds. GNU C compiler with optimisation
option -O2 was used for these tests. Once data has been computed, the interactive visualisation can be
manipulated in real-time.

! This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

* Corresponding author.
E-mail address: scottdberry@gmail.com (S.D. Berry).

0010-4655/$ – see front matter  2011 Published by Elsevier B.V.
doi:10.1016/j.cpc.2011.06.002

http://dx.doi.org/10.1016/j.cpc.2011.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEJN_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:scottdberry@gmail.com
http://dx.doi.org/10.1016/j.cpc.2011.06.002

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.2 (1-8)

2 S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

References:
[1] J. Ellson, E. Gansner, E. Koutsofios, S. North, G. Woodhull, Graphviz and dynagraph – static and

dynamic graph drawing tools, in: M. Junger, P. Mutzel (Eds.), Graph Drawing Software, Springer-
Verlag, 2003, pp. 127–148.

 2011 Published by Elsevier B.V.

1. Introduction

Random walks are useful in understanding fundamental classi-
cal processes such as diffusion and Brownian motion [1]. They have
become a standard technique for modelling diverse processes in
physics, chemistry, biology as well as in social science. They have
also been applied to many different mathematical problems such
as optimisation [2], solving differential equations [3], and investi-
gating graph and network structure [4].

Quantum walks are a quantum mechanical extension of classi-
cal random walks [5]. However, they display remarkably different
and non-intuitive dynamics, which have lead to the development
of fast algorithms for various problems in the context of quantum
computation, including search [6–8], element distinctness [9], test-
ing group commutativity [10] and various graph-theoretic prob-
lems [11–14]. Quantum walks can also be regarded as a universal
computational primitive, meaning that any computation can be
formulated as a quantum walk on some graph [15,16].

In addition to their usefulness in an algorithmic context, quan-
tum walks provide a flexible physical model of coherent or par-
tially decoherent quantum systems [17] and tools developed in
studies of quantum walks are beginning to be applied to study
various problems in physics [18–20].

Early studies in the field focused on quantum walks on the
line and were greatly aided by visualisations of how different ini-
tial states and walk parameters affect the probability distributions
obtained [5,21,22]. More recently, studies have included quantum
walks on higher-dimensional graphs [23]. As the structures con-
sidered have become more complex, the probability distributions
have become increasingly difficult to visualise and interpret [24–
32].

Unlike classical random walks, quantum walks on graphs dis-
play remarkably non-intuitive dynamics. A tool for interactive vi-
sualisation of the time-evolution of these quantum walks will pro-
vide insight into the relationship between the dynamics of a quan-
tum walk and the underlying structure of the graph. This insight
will be valuable in the development of quantum algorithms and
in studying the various problems in physics that quantum walks
are used to model. These visualisations will also allow results to
be easily presented to other researchers, enabling rapid communi-
cation of ideas between research teams and also to broader audi-
ences.

This paper is structured as follows. Section 2 begins with an
introduction to the theoretical formulation of quantum walks. In
Section 3, we provide an overview of the qwViz software and its
installation. In Section 4, we give a more detailed description of
the usage of qwViz including command line options and user inter-
face. We also give some simple examples of results obtained using
various inputs. Section 5 contains some examples of how the soft-
ware can be used to intuitively visualise quantum walk data and
investigate quantum walk dynamics. Finally, Section 6 contains our
conclusions. Appendices A, B and C contain descriptions of the in-
put and output file formats.

2. Discrete-time quantum walks on graphs

In this section we describe quantum walks taking place on
graphs with an evolution in discrete time steps. We first define
a graph in this context.

Fig. 1. Diagram of the vertex and subnode states of a 6-vertex undirected graph.
Vertex states |i〉 for i = 1, . . . ,6 (circles) are shown for all vertices. The product
states |2,1〉, |2,3〉 and |2,6〉 representing the subnodes of vertex 2 are also shown.
The coin states of vertex 2 are labelled according to the label of the adjacent vertex.

Definition 1 (Graph). Let G(V , E) be an undirected graph with ver-
tex set V = {v1, v2, v3, . . .} and edge set E = {(vi, v j), (vk, vl), . . .}
consisting of unordered pairs of connected vertices. If there are d
edges incident on a vertex vi , we say that vi has degree d. A graph
G with N vertices is conveniently described by its adjacency ma-
trix A, which is an N × N matrix satisfying,

Aij =
{
1 if (vi, v j) ∈ E,
0 otherwise.

(1)

The adjacency matrix of a graph is unique up to permutation and
thus contains all information about the graph [33].

The vertices of a graph represent the quantum states that can
be occupied throughout the evolution of the quantum walk. The
edges connecting these vertices specify the permitted transitions
between these quantum states at each time step. While the clas-
sical random walk on a graph is localised to a particular vertex
at each time step, the quantum walk can be in a superposition
of multiple vertex states, allowing the quantum walker to traverse
multiple paths on the graph simultaneously throughout the evo-
lution of the walk [23]. The probability distribution P (t) over a
vertex set V at a time t during the evolution of the quantum walk
describes the probability of finding the quantum walker at each
vertex vi ∈ V after t steps of the walk.

In order to describe the mathematical formalism of discrete-
time quantum walks on graphs, we first define how the vertices
and edges of a graph are related to the Hilbert space in which
the quantum walk takes place. The vertices represent vertex states
{|vi〉: vi ∈ V }, which form an orthonormal basis for the position
Hilbert space H P . Associated with each vertex vi is also a set
of “coin” states {|c j〉: j = 1, . . . ,di}, where di is the degree of
the vertex vi . These coin states represent the outgoing edges of
each vertex and span an auxiliary “coin” Hilbert space, H C . The
discrete-time quantum walk on a graph takes place on the sub-
nodes of the graph, which are represented by product states of the
form |v〉⊗ |c〉 = |v, c〉 ∈ H P ⊗ HC [6,23]. Fig. 1 shows a graph, with
vertex and subnode states indicated.

Definition 2 (Discrete-time quantumwalk). One step of the discrete-
time quantum walk on a graph is the application of the unitary
time-evolution operator U = S · (1 ⊗ C), where S is the shift op-
erator and C is the coin operator. S acts on the extended position
space HP ⊗ HC as,

S|vi, c j〉 = |v j, ci〉, (2)

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.3 (1-8)

S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–••• 3

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

where |vi, c j〉 is the subnode state corresponding to the edge
(vi, v j) at the vertex vi . The coin operator C at a vertex vi of
degree di can be represented by a di × di matrix, which mixes the
probability amplitudes of the subnode states of vi [31,34].

A common choice of coin operator for quantum walks on
graphs is the Grover coin G , which has elements [6,31,34]

Gij = −δi j + 2/d. (3)

3. Overview of the software

When executed, qwViz can perform one of two distinct tasks.
Firstly, it can compute and plot time-dependent probability distri-
butions for discrete-time quantum walks on graphs. In this case,
the input data is simply the adjacency matrix of the graph, speci-
fied as an ADJ file (Appendix A). Parameters controlling the quan-
tum walk can be manipulated using command line options. In this
way, qwViz provides the ability to quickly examine a quantum walk
or quantum-walk-based spatial search procedure on a particular
structure. There are, however, limited built-in options available for
the customisation of the walks, making direct simulation by qwViz
insufficient for researchers who wish to examine the effects of var-
ious initial states, coin operators and decoherence on the dynamics
of quantum walk.

Secondly, to allow users to have complete control over the
mathematical operations involved in the quantum walk, qwViz
can be used to plot externally generated quantum walk data. An
XML-based file format QWML (Quantum Walk Markup Language)
is introduced here to facilitate the input of data from quantum
walk simulations into qwViz (Appendix B). It should be noted that
QWML files can be used to visualise arbitrary probability distribu-
tions, including those arising from continuous-time quantum walks
and even classical random walks.

To facilitate simple export of quantum walk simulation data
from user generated software, functions written in C and Fortran
for writing QWML files are provided with the qwViz package.

For both the ADJ and QWML inputs, visualisation commences
once the data structures required to plot the probability distribu-
tion are computed (or read from a file) and all vertices of the graph
are assigned coordinates in two dimensions. Straight edges con-
necting these vertices are drawn and the probability distribution
is plotted at each time step using cylinders at each vertex, whose
height represents the probability of finding the quantum walker at
that particular vertex. The cylinders are also coloured according to
the value of probability that they represent.

3.1. Installation and dependencies

The qwViz package is simple to install on Mac OS X and
Linux environments. The package uses OpenGL and GLUT libraries
for handling graphics and Graphviz libraries for generating two-
dimensional graph layouts from graph structural information pro-
vided at run-time. Graphviz [35] source code is freely available
under the Eclipse Public License version 1.0 (www.graphviz.org).
Standard installations of Graphviz from source code or using Mac-
Ports place the required libraries in directories which will be auto-
matically linked by the standard qwViz installation. For users who
do not install Graphviz in the standard directories, more informa-
tion is provided with the qwViz source code.

The two input file formats ADJ and QWML are described in Ap-
pendices A and B, respectively. Once the program is installed and
the directory containing the qwViz binary has been added to the
path, one just needs to type

qwViz infile.adj

or

qwViz infile.qwml

to execute the program. The .adj or .qwml filename extension
for the input data file is used to determine whether data should
be generated based on command line controls (ADJ) or whether
externally generated data are being plotted.

3.2. Performance

For all cases tested (up to 1331 vertices), the software ran at
the target frame rate of 60 fps, which allowed realtime manip-
ulation of the visualisation. While TIFF or TGA images are being
continuously exported, the software may run at a lower frame rate
depending on the size of the image window and relative speed of
the hard disk.

4. Usage

We now describe the usage of qwViz with ADJ (Section 4.1) or
QWML (Section 4.2) input files. Command line options and inter-
active user interface which are common to both input formats are
described in Section 4.3. The input files for all examples presented
are provided with the source code.

4.1. Adjacency matrix inputs: generating quantum walk data

The time-dependent probability distribution for a discrete-time
quantum walk on a graph can be directly computed by providing
the adjacency matrix of the graph as an ADJ input file. The ADJ file
format is described in Appendix A. Graphviz library functions are
called to generate a two-dimensional graph layout based on the
connectivity information provided by the adjacency matrix.

4.1.1. Options
We now explain in detail the command line options that

can be used to control the simulation of discrete-time quantum
walks with ADJ file inputs. It should be noted that -start and
-search options are not compatible options since their initial
states differ. The numbering of the vertices is obtained from the
row numbers of the adjacency matrix from 1 to N .

1. -start vi , where 1 ! vi ! N is an integer specifying the
vertex at which the quantum walker is initially localised. The
quantum walk procedure is explained in Section 4.1.2. The de-
fault starting vertex is vertex 1.

2. -search vi , where 1 ! vi ! N is an integer specifying the
marked vertex in the quantum-walk-based search procedure
described in Section 4.1.3.

3. -steps t , where t > 0 is an integer specifying the number of
steps in the quantum walk. The default number of steps in a
simulation is 200.

4. -o outfile, where outfile is a filename with extension .qwml
or .prob. This option causes the time-dependent probability
distribution computed to be written to an external file. The file
format is determined from the filename extension. The QWML
and PROB file formats are described in Appendices A and C,
respectively.

If no command line options are specified then the default proce-
dure is to simulate a 200-step quantum walk from vertex 1, which
is equivalent to typing,

qwViz -start 1 -steps 200 infile.adj

scottberry
This should read "Appendices B and C" and should be linked to Appendix B rather than Appendix A

http://www.graphviz.org

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.4 (1-8)

4 S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Fig. 2. Single frame of the visualisation generated by simulating a quantum walk
with Grover coin from the central vertex (vertex 210) of a 20× 20 two-dimensional
lattice, based on the adjacency matrix given in grid20x20.adj. The coordinates
of the vertices are automatically generated using the Graphviz’ neato algorithm.

4.1.2. Simulating quantum walks
The initial state |ψ0〉 for the simulations of quantum walks on

graphs is an equal superposition of the coin states of the starting
vertex

|ψ0〉 =
di∑

ci=1

|vi, ci〉. (4)

The quantum walk proceeds from this state by the repeated ap-
plication of the unitary time-evolution operator U , as described
in Section 2. The coin operator at each vertex is the Grover coin
(Eq. (3)).

The ADJ file grid20x20.adj contains the adjacency matrix
of a 20× 20 two-dimensional regular lattice. The command

qwViz -start 210 grid20x20.adj

computes and plots the time-dependent probability distribution
arising from a quantum walk starting at vertex 210 (a central ver-
tex). A plot of the probability distribution after 9 steps of the walk
is shown in Fig. 2.

4.1.3. Simulating quantum-walk-based search
The initial state |ψ0〉 for the simulations of quantum-walk-

based search on graphs is an equal superposition of all vertex
states |vi〉 ∈ HP . The probability amplitude at each vertex is then
divided equally between all subnodes. Formally, the initial state is
given by

|ψ0〉 = 1√
N

N∑

i=1

di∑

j=1

1√
di

|vi, c j〉. (5)

The target of the search procedure is called the marked vertex,
where the marking is intended to represent a “quantum oracle”
and is implemented as a perturbation to the coin operator at
the marked vertices. The quantum search procedure proceeds via
the repeated application of the perturbed time-evolution operator,
U ′ = S · (1 ⊗ C ′) where the coin operator at vertex vi is given by

(
C ′
i

)
mn =

{
−δmn + 2/di, vi /∈ M,
−δmn, vi ∈ M,

form,n = 1, . . . ,di . (6)

Fig. 3. Single frame of the visualisation generated by simulating the quantum-walk-
based search procedure described in Section 4.1.3 on the regular hyperbranched
fractal given in RHFf5g3.adj. The coordinates of the vertices are automatically
generated using Graphviz’ neato algorithm. The central vertex (vertex 6) is “marked”
in the search procedure and is indicated with the vertex identification arrow.

Depending on the structure of the graph and the position of
the marked vertex within the structure, this quantum search pro-
cedure can result in significant amplification of the probability of
finding the quantum walker at the marked vertex, and can in some
cases lead directly to a quantum-walk-based algorithm for spatial
search [6].

Quantum walks and quantum-walk-based search on regular hy-
perbranched fractals have been studied in [30,31]. The ADJ file
RHFf5g3.adj contains the adjacency matrix of a third genera-
tion regular hyperbranched fractal, with a functionality of 5. The
command

qwViz -search 6 RHFf5g3.adj

computes and plots the time-dependent probability distribution
arising from the search procedure described above with vertex 6
(the central vertex) being marked. The probability of finding the
particle at the central vertex reaches its first maximum after 31
steps of the walk (Fig. 3).

4.2. QWML inputs: plotting existing quantum walk data

In order to plot externally generated quantum walk data, it is
necessary to export the adjacency matrix and the time dependent
probability distribution as a QWML file. Appendix B contains a de-
scription of the QWML file format.

Upon executing qwViz with a QWML input file. The data struc-
tures required to plot the quantum walk data are populated ac-
cording to the input file. If the <graphlayout> tag is present in
the QWML input file and (x, y)-coordinates are successfully read
for all vertices, then the vertices will be laid out according to the
coordinates given in the file. Otherwise Graphviz library functions
will be called to generate a two-dimensional layout of the graph
and assign (x, y)-coordinates to the vertices.

The QWML file dsg3.qwml contains the adjacency matrix,
probability distribution and graph layout information for a discrete-
time quantum walk on a third generation dual Sierpiński gasket
starting at a peripheral vertex, equivalent to data presented in [29].
Typing

qwViz dsg3.qwml

scottberry
Equation 4 needs two modifications.
1. A normalisation factor must be added in front of the summation sign. \frac{1}{\sqrt{d_i}}.

2. For consistency with equation 5 (page 4 line 54) we would like to change the summation index from c_i to j. We also then need to change c_i to c_j.

The latex code for the entire equation is provided below.

|\psi_0\rangle = \frac{1}{\sqrt{d_i}}\sum_{j=1}^{d_i} |v_i,c_j\rangle

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.5 (1-8)

S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–••• 5

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Fig. 4. Single frame of the visualisation generated from the dsg3.qwml file. In this
case the coordinates of the vertices are specified in the QWML file.

produces a time-dependent visualisation of the quantum walk data
contained in dsg3.qwml. A frame of this visualisation with after
6 steps of the walk is shown in Fig. 4.

4.3. Command line options and interactive user interface

The command line options listed below are available when us-
ing either ADJ or QWML input files.

1. -h, prints help text to standard error.
2. -v, prints messages about the program to standard error while

the program is running (verbose mode).
3. -f, resizes the display window to take up the full screen.
4. -s, active stereo mode.
5. -ss, dual (side-by-side) stereo mode.
6. -bg r g b, where r, g,b " 0 are floating point numbers. Sets

the background colour (default is black: -bg 0 0 0).

7. -cs i, where 1 ! i ! 25 is an integer. Sets the colour scheme
for the probability distribution (default is -cs 1).

8. -neato, uses Graphviz’ neato algorithm to layout the vertices.
This is the default layout algorithm and typically achieves the
best results.

9. -circo, uses Graphviz’ circo algorithm to layout the vertices
in a circle.

10. -fdp, uses Graphviz’ fdp (Fruchterman–Reingold) algorithm to
layout the vertices.

11. -tiff, changes the image export format to TIFF (default is
TGA).

12. -i subframes, where subframes > 1 is an integer. Linearly
interpolates the data between time steps to plot subframes
frames per data point. This results smoother growing and
shrinking of the cylinders representing the probability distri-
bution. By default this option is disabled so only the data for
integer time steps is plotted.

The interactive user interface is shown in Table 1. The keys in-
dicated in the Key/Mouse button column of Table 1 are used for
real-time manipulation of the visualisation.

5. Examples of usage

We now demonstrate how qwViz can be used to visualise a
well-known result obtained for quantum walks on graphs. In 2003,
Childs et al. [11] constructed an artificial problem that can be
solved exponentially faster by quantum walks than any known
classical method. The problem takes place on the glued-trees graph,
which is constructed by randomly connecting the leaves of two
balanced binary trees (Fig. 5). The problem is to start at one root
vertex (entrance) and to find the other (exit) using the minimum
number of steps. This problem has also been studied numerically
for discrete-time quantum walks [24].

Fig. 5 shows the probability distributions of (a) a random walk
and (b) a quantum walk after 9 steps, starting from the entrance
vertex. As shown in Fig. 5, the quantum walk has a far greater
probability of being found at the exit vertex than the random
walk. For the initial state studied here, it is possible to project

Table 1
Description of the user interface options.

Key/Mouse button Description

Camera
< > Move camera forward or backward
+ - Zoom in/out by changing aperture
[] Roll camera (anticlockwise/clockwise)
Arrow keys or left mouse Rotate camera
Shift + Arrow keys or left mouse Translate camera
a A z Automatic rotation (anticlockwise/clockwise/stop)
x Return camera to home position
f1 . . . f6 Special camera views

Data visualisation
p Toggle play/paused
n b Next/back: increment or decrement time
/ Reset time to zero
u d Up/down: adjust the scale for the plotted data
s f Slow/fast: adjust the frame rate
c v Adjust the radius of the vertices (increase/decrease)

Vertex identification
j Toggle vertex identification arrow on/off
k l Increment the vertex identification arrow

Other
Right mouse Popup menus
w Window dump to TGA file in working directory
r Record: Toggle continuous window dump
h Help: Display help text and interface information
i Info: Display scale and time step information

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.6 (1-8)

6 S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Fig. 5. A comparison of the probability distributions obtained after 9 steps of (a) classical random walk and (b) quantum walk starting from the entrance node.

Fig. 6. A comparison of the probability distributions obtained from the first three steps of an unbiased quantum walk on a Cayley tree starting from (a)–(d) a central vertex
or (e)–(h) a non-central vertex. The symmetric distribution obtained in the central case is relatively intuitive compared to the distribution obtained from the non-central case
however qwViz allows both cases to be easily investigated.

the glued trees problem onto a line and solve analytically for
the time-evolution of the walk. However, using qwViz to view the
time-evolution of the probability distribution on the graph pro-
vides a more intuitive picture of what is actually happening and
allows the user to view the probabilities of all states simultane-
ously. Moreover, using qwViz, quantum walks from any initial state
can be studied in the same manner, not just from initial states
with particular symmetry.

We now examine the case of quantum walks and quantum-
walk-based search on Cayley trees, which have also been studied
previously [26,31,32,36]. Quantum walks with both central and
non-central starting positions have been studied numerically as a
model of coherent exciton transport [26], though visualisation of
results has been difficult for non-central excitations since the rota-
tional symmetry often used to reduce the complexity of the prob-
lem is broken. Analytical results have also been obtained for search
on Cayley trees when the central vertex is marked, but not for any
other positions of the marked vertex [31]. Using qwViz to visualise
quantum walks and search on Cayley trees allows probability dis-
tributions from non-central starting positions to be visualised in
exactly the same manner as those for central starting positions.

Fig. 6 shows the first few steps of quantum walk with initial cen-
tral and non-central excitations. Visualising quantum walk data for
less symmetric initial states will lead to a greater understanding
of the dynamics of quantum walks, which may lead to the de-
velopment of quantum-walk-based algorithms on more complex
structures.

Finally, we give an example of how qwViz can be used to in-
vestigate quantum walk dynamics on large non-vertex-transitive
structures, such as a fifth generation Sierpiński gasket, which has
366 vertices. Shown in Fig. 7 are two frames from the visualisa-
tion of the quantum-walk-based search for a peripheral vertex on
the Sierpiński gasket. Although Fig. 7 gives some indication of the
complexity of the dynamics of quantum walks on large non-vertex-
transitive structures, viewing the full visualisations produced by
qwViz, it is possible to see the probability distribution spreading
over the surface of the graph and directly observe the various fre-
quencies involved. The time-dependent visualisations also make it
possible to see how certain structural features of the graph influ-
ence the flow of probability distribution around the structure. For
example, we can see that the vertices which connect the larger
triangles of the Sierpiński gasket have, on average, higher prob-

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.7 (1-8)

S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–••• 7

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Fig. 7. Visualising the quantum-walk-based search for marked vertex 1 (indicated with the arrow at the far left of the graph); (a) shows the probability distribution after 92
steps of the walk when the probability of finding the quantum walker at the marked vertex is a maximum; (b) shows the probability distribution after 167 steps of the walk.
Observing the probability distribution flow over the surface of this graph throughout this simulation provides an intuitive picture of large scale quantum walk dynamics.

abilities than other vertices because the probability distribution
must flow through these vertices to access the different areas of
the graph.

6. Conclusions

We have developed qwViz as a tool for the interactive visu-
alisation of the time evolution of probability distributions arising
from quantum walks on graphs. The software can function by di-
rect simulation of discrete-time quantum walks on graphs or by
plotting externally data generated data arising from discrete- or
continuous-time quantum or random walks. This allows the user
to either perform simple investigations using the built-in simula-
tion capability or to have complete control over the mathematical
operations involved in the quantum walk, making the software
suitable for research in the fields of quantum-walk-based algo-
rithm development and using quantum walks to model physical
systems. Two-dimensional graph layouts can either be automati-
cally generated or alternatively, the coordinates of each vertex can
be specified by the user.

We have demonstrated that qwViz allows intuitive realtime vi-
sualisation of results that were previously difficult to interpret and
provides insight into quantum walks on large non-vertex-transitive
structures where intuitive visualisation of simulation data has been
previously impossible. Researchers interested in using quantum
walks as a physical model to study coherent quantum systems
such as exciton transport on structures like the Fenna–Matthews–
Olson protein complex [37], will find such visualisations useful in
analysing results of numerical simulations.

Acknowledgements

This work was supported by iVEC through the use of advanced
computing resources located at The University of Western Aus-
tralia.

Appendix A. ADJ file format

The ADJ file format is used to store the adjacency matrices of
graphs in a human-readable form. ADJ text files may contain a
header with the name of the graph and any other text. The ad-
jacency matrix is read from the file when either “0” or “1” is
encountered as the first character in the line, for this reason the
header may not begin any line with the characters “0” or “1”. Note
that qwViz does not allow quantum walk data to be calculated for

Fig. 8. The contents of the file complete4.adj, containing the adjacency matrix
of the complete graph with four vertices.

graphs with multiple or directed edges or self-loops. For a graph
with N vertices, the entries in the first row take up the first N
characters of each line, whitespace may follow each row of the ad-
jacency matrix. The number of digits in the first row is used to
allocate memory to store the entire adjacency matrix. Successive
rows of the matrix must be separated by new lines. An ADJ file is
shown in Fig. 8.

ADJ files can be automatically produced from graph6 or sparse6
files using the showg utility, which comes as part of the nauty
package [38]. If showg is installed, typing

showg -a graphfile.g6 > graphfile.adj

will convert graphfile.g6 to a valid ADJ file.

Appendix B. QWML file format

The QWML file format conforms to the W3C Extensible Markup
Language (XML) 1.0 specification [39]. An XML Schema (qwml.xsd)
is provided with the source code. The root tag for QWML filed
is <qwml> and at the first level there are two required tags,
<adjacency> and <probdist> and the optional tag <graph-
layout>. At this level, other tags are allowed but will be ignored
by qwViz. Whitespace is permitted inside tags and data fields but
is not advised. Blank lines are also permitted but not advised. Sev-
eral example QWML files are included with the source code.

The <adjacency> tag contains only <row> tags, which in
turn contain the elements <col>, providing the adjacency ma-
trix data. An example of an <adjacency> structure is shown in
Fig. 9(a).

The <probdist> tag contains the probability distribution, or-
dered by <vertex> tags. In turn, these <vertex> tags contain
the elements <prob>, which provide the time-ordered probabili-
ties of finding the quantum walker at a vertex. These are read by
qwViz as double precision floating point numbers. The number of

scottberry

JID:COMPHY AID:4487 /FLA [m5Gv1.5; v 1.53; Prn:14/06/2011; 8:56] P.8 (1-8)

8 S.D. Berry et al. / Computer Physics Communications ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Fig. 9. Example of (a) the adjacency matrix of a two-vertex connected graph as written under the <adjacency> structure of a QWML file and (b) the probability distribution
for the first two steps of a quantum walk on this graph as written under the <probdist> structure.

Fig. 10. Example of a graph layout for a two-vertex connected graph as written
under the <graphlayout> tag of a QWML file.

<prob> tags inside the first <vertex> tag determines the num-
ber of steps in the quantum walk. All subsequent <vertex> tags
must contain the same number of <prob> tags. The order of the
vertices in <probdist> must be the same as that given by the
adjacency matrix. An example is shown in Fig. 9(b).

Like <probdist>, <graphlayout> is a simple type con-
taining <vertex> tags, which themselves contain the sequence
of elements <xcoord> and <ycoord> to provide the coordi-
nates of vertices in two dimensions. The data for the <xcoord>
and <ycoord> elements must be single-precision floating point
numbers. The coordinates will be read by qwViz and scaled to fit
in the viewing area. An example is shown in Fig. 10. As for the
<probdist> tag, the vertices must be in the same order as the
adjacency matrix.

Appendix C. PROB file format

A PROB output file is designated by the .prob filename exten-
sion and contains a table of double precision floating point num-
bers representing the probabilities of finding the quantum walker
at each vertex. The columns follow the order of the vertices in
the adjacency matrix and successive rows of the table represent
successive steps of the walk. The PROB file format provides the
ability to export quantum walk simulation data from qwViz in a
table-based form which can be readily imported by other software
packages.

References

[1] D. ben Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered
Systems, Cambridge University Press, Cambridge, UK, 2000.

[2] B.A. Berg, Nature 361 (1993) 708.

[3] S. Hoshino, K. Ichida, Numer. Math. 18 (1971) 61.
[4] J.D. Noh, H. Rieger, Phys. Rev. Lett. 92 (2004) 118701.
[5] J. Kempe, Contemp. Phys. 44 (2003) 307.
[6] N. Shenvi, J. Kempe, K.B. Whaley, Phys. Rev. A 67 (2003) 052307.
[7] A.M. Childs, J. Goldstone, Phys. Rev. A 70 (2004) 022314.
[8] A. Tulsi, Phys. Rev. A 78 (2008) 012310.
[9] A. Ambainis, Quantum walk algorithm for element distinctness, in: FOCS ’04:

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Washington, DC, USA, 2004, pp. 22–31.

[10] F. Magniez, A. Nayak, Algorithmica 48 (2007) 221, doi:10.1007/s00453-007-
0057-8.

[11] A.M. Childs, et al., Exponential algorithmic speedup by a quantum walk, in:
STOC ’03: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, ACM, New York, NY, USA, 2003, pp. 59–68.

[12] B.L. Douglas, J.B. Wang, J. Phys. A: Math. Theor. 41 (2008) 075303.
[13] J.K. Gamble, M. Friesen, D. Zhou, R. Joynt, S.N. Coppersmith, Phys. Rev. A 81

(2010) 052313.
[14] M. Hillery, D. Reitzner, V. Bužek, Phys. Rev. A 81 (2010) 062324.
[15] A.M. Childs, Phys. Rev. Lett. 102 (2009) 180501.
[16] N.B. Lovett, S. Cooper, M. Everitt, M. Trevers, V. Kendon, Phys. Rev. A 81 (2010)

042330.
[17] V. Kendon, Math. Structures Comput. Sci. 17 (2007) 1169.
[18] M. Katori, S. Fujino, N. Konno, Phys. Rev. A 72 (2005) 012316.
[19] T. Oka, N. Konno, R. Arita, H. Aoki, Phys. Rev. Lett. 94 (2005) 100602.
[20] P. Kurzynski, Phys. Lett. A 372 (2008) 6125.
[21] T.A. Brun, H.A. Carteret, A. Ambainis, Phys. Rev. A 67 (2003) 052317.
[22] B. Tregenna, W. Flanagan, R. Maile, V. Kendon, New J. Phys. 5 (2003) 83.
[23] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs, in:

STOC ’01: Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing, ACM, New York, NY, USA, 2001, pp. 50–59.

[24] I. Carneiro, et al., New J. Phys. 7 (2005) 156.
[25] O. Mülken, A. Blumen, Phys. Rev. E 71 (2005) 016101.
[26] O. Mülken, V. Bierbaum, A. Blumen, J. Chem. Phys. 124 (2006) 124905.
[27] A. Blumen, V. Bierbaum, O. Mülken, Phys. A: Statist. Mech. Appl. 371 (2006)

10.
[28] O. Mülken, V. Pernice, A. Blumen, Phys. Rev. E 76 (2007) 051125.
[29] E. Agliari, A. Blumen, O. Mülken, J. Phys. A: Math. Theor. 41 (2008) 445301.
[30] A. Volta, J. Phys. A: Math. Theor. 42 (2009) 225003.
[31] S.D. Berry, J.B. Wang, Phys. Rev. A 82 (2010) 042333.
[32] E. Agliari, A. Blumen, O. Mülken, Phys. Rev. A 82 (2010) 012305.
[33] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, NY, USA, 2001.
[34] A. Ambainis, J. Kempe, A. Rivosh, Coins make quantum walks faster, in: SODA

’05: Proceedings of the Sixteenth Annual ACM–SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2005, pp. 1099–1108.

[35] J. Ellson, E. Gansner, E. Koutsofios, S. North, G. Woodhull, Graphviz and dyna-
graph – static and dynamic graph drawing tools, in: M. Junger, P. Mutzel (Eds.),
Graph Drawing Software, Springer-Verlag, 2003, pp. 127–148.

[36] K. Chisaki, M. Hamada, N. Konno, E. Segawa, Interdisciplinary Inform. Sci. 15
(2009) 423.

[37] M. Mohseni, P. Rebentrost, S. Lloyd, A.A. Guzik, J. Chem. Phys. 129 (2008)
174106.

[38] B.D. McKay, nauty User’s Guide (Version 2.4), Australian National University,
Canberra, Australia, 2009.

[39] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible
markup language (XML) 1.0, fifth edition, Technical report, W3C, 2008.

http://dx.doi.org/10.1007/s00453-007-0057-8
http://dx.doi.org/10.1007/s00453-007-0057-8

	qwViz: Visualisation of quantum walks on graphs
	1 Introduction
	2 Discrete-time quantum walks on graphs
	3 Overview of the software
	3.1 Installation and dependencies
	3.2 Performance

	4 Usage
	4.1 Adjacency matrix inputs: generating quantum walk data
	4.1.1 Options
	4.1.2 Simulating quantum walks
	4.1.3 Simulating quantum-walk-based search

	4.2 QWML inputs: plotting existing quantum walk data
	4.3 Command line options and interactive user interface

	5 Examples of usage
	6 Conclusions
	Acknowledgements
	Appendix A ADJ ﬁle format
	Appendix B QWML ﬁle format
	Appendix C PROB ﬁle format
	References

