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Highlights

• The free energy principle is applied to embryogenesis of the cortex.
• Developing neurons are selected to maximize pulse synchrony.
• Realistic cortical anatomy emerges for a wide-range of structures.
• Learning obeys Friston’s “self-evidencing” with minimum free energy and bounded entropy.
• Computational properties accord with Perlovsky’s “dynamic logic”.



The growth of cognition: free energy minimization and the embryogenesis of cortical 
computation. 

J. J. Wright 
Centre for Brain Research, and Department of Psychological Medicine, School of Medicine, University of 
Auckland, Auckland, New Zealand. 
jj.w@xtra.co.nz 
 
P.D. Bourke 
School of Social Sciences, Faculty of Arts, Business, Law and Education, University of Western Australia, 
Perth, Australia. 
paul.bourke@uwa.edu.au 
 

Abstract  

The assumption that during cortical embryogenesis neurons and synaptic connections are selected to form an 

ensemble maximising synchronous oscillation explains mesoscopic cortical development, and a mechanism for  

cortical information processing is implied by  consistency with the Free Energy Principle and Dynamic Logic.A 

heteroclinic network emerges, with stable and unstable fixed points of oscillation corresponding to activity in 

symmetrically connected, versus asymmetrically connected, sets of neurons. Simulations of growth explain a 

wide range of anatomical observations for columnar and non-columnar cortex, superficial patch connections, 

and the organization and dynamic interactions of neurone response properties. An antenatal scaffold is created, 

upon which postnatal learning can establish continuously ordered neuronal representations, permitting matching 

of co-synchronous fields in multiple cortical areas to solve optimization problems as in Dynamic Logic. Fast 

synaptic competition partitions equilibria, minimizing “the curse of dimensionality”, while perturbations 

between imperfectly partitioned synchronous fields, under internal reinforcement, enable the cortex to become 

adaptively self-directed. As learning progresses variational free energy is minimized and entropy bounded. 

Key Words : free energy principle, cortical embryogenesis, synchronous oscillation, neuronal representation, dynamic 
logic, physics of the mind. 

 

1. Introduction 

1.1 The free energy principle and computation in the brain 

Determination of elementary laws for the organization of the brain, and its means for representation and 

manipulation of information, are two major, and related, scientific goals [1,2,3,4,5].  

Toward the first of these goals, Friston and colleagues [6,7,8,9,10,11], in their “Free Energy Principle”, have 

extended the work of Jaynes [12], emphasising mathematical unity from the physical principle of least action, 

through thermodynamics, and, via considerations of optimum information representation, to living systems and 

to machine and real intelligence. By separating evolving systems into hierarchies of subsystems, each defined by 

enclosure in a Markov blanket – that is, a means of receiving inputs from, and generating outputs to, the 

surround - each subsystem’s dynamics can then be described in analogy to thermodynamic minimization of free 
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energy – and in the case of living systems, with the increase of entropy bounded. Consequently, since 

representation of meaningful information in noisy data requires optimum minimization of model complexity 

[13], the brain’s self-organisation during learning involves a gradient flow on a functional that entails a 

minimisation of complexity [14] - with complexity, measured by the degrees of freedom that are used to provide 

an accurate representation of sensory input, diminishing as learning progresses, minimizing discrepancy 

between Bayesian prior and posterior representations of the causes of sensory perturbations. Thus the brain 

operates to minimize surprisal – having learnt to maintain its survival by forming a sensory-motor model of its 

relations with the environment - and surprisal is the informational analogue of thermodynamic free energy. The 

principle offers strong theoretical assurance of the globality of the learning - a property referred to by Friston 

as”self-evidencing” - but does not necessarily specify the variables that undergo dimension reduction during 

learning, and has not yet been translated into specific cellular anatomical and physiological terms. 

Toward the second goal, Perlovsky and colleagues’ “Physics of the Mind” [15,16,17,18,19,20,21,22] aims to 

specify a psychologically realistic information processing mechanism for the brain, which bypasses bottle-necks 

of standard computation. In artificial neural network (ANN) simulations, their “Dynamic Logic” entails the 

emergence of disentangled and orthogonalized solutions to a type of optimization whereby “vague” (ie, less 

orthogonalized) neural representations at lower and higher levels of the neural hierarchy are rapidly matched to 

achieve “crisp” neural representations, forming a basis for the continuous interaction of sensory inputs, 

perceptual, and intentional processes. Generalisation to interactions between many cortical areas implies a 

mechanism for overall brain coordination. Although less abstract, this account, too, lacks specification in cellular 

biological terms, but does direct attention toward pulse dynamics and synchrony.  

Crucially, dynamic logic may be regarded as a special case of the free energy principle, and offers detail for the 

required mechanisms for general associative learning required to fill out the application of the free energy 

principle to brain function. In both concepts, minimization of variational free energy is equivalent to restriction 

of the degrees of freedom of the system dynamics; ie, the emergence of generalised synchronisation on 

relatively low dimensional manifolds that preserve mutual information between neuronal dynamics, and the 

sensorium [23], and among cortical areas. This suggests that action potential synchronization, discovered by 

Singer and colleagues [24,25,26,27,28], might mediate the brain’s development and learning – and in turn 

suggests a strong test for the applicability of the free energy principle. If the principle is valid in this context, 

then simulations of the emergence of synchrony during neurodevelopment and later learning ought to result in 

outcomes with realistic micro and mesoscopic neuroanatomy, just as, at a basic physical level, application of the 

principle of least action prescribes the parabolic trajectory of a projectile. It might be further hoped that a 

cellular basis for dynamic logic would incidentally become apparent. Our work, although separately motivated 

by the problems described in the following sections, has addressed both aspects. We hope to show in this paper 

that the cellular mechanisms required for both the self-evidencing learning of the free energy principle, and the 

powerful associative learning of dynamic logic, follow from our account of cortical dynamics and 

embryogenesis. 
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1.2 The mesoscopic scale of cortical organisation 

During embryogenesis cortical neuron precursors divide and migrate [29,30,31,32,33]. Developing neurons 

become progressively elongated, synapses connect neurons one-to-many, in a sparse fashion, with few synapses 

formed for the number of contacts made between axons and dendrites [33,34]. A network with low degrees of 

separation and weak cell-to-cell connectivity is created, subject to synaptic learning rules [35], competition for 

critical substrates [36] and the apoptotic death [37,38,39] of many cells. Apoptosis is attributed to competition 

for neurotrophic growth factors, and a caspase “execution” pathway. For our purposes it is important that 

developing neurons fire synchronously while self-organizing into small worlds [40] and neurons prevented from 

firing synchronously are prone to apoptosis [38]. 

Traditionally, anatomists have sought to understand cortical order by study of cortical columns 

[41,42,43,44,45,46]. These are most marked in the primary visual cortex of large primates, and are composed of 

areas (macrocolumns) made up of cells with short axons [47,48,49] surrounded by localized groups of cells 

(superficial patch cells) with longer axons forming regular patches of synaptic connections “patch to patch” to 

their neighbors [50,51,52,53,54,55,56]; the columns and patches together imposing an irregular hexagonal tiling 

pattern [44,45] or a square pattern where ocular dominance columns occur [56]. In primary visual cortex [57,58, 

59] individual neurons show preferential responses for visual stimulation according to the orientation of an 

elongated, slowly moving visual stimulus. Orientation preference (OP) is organized within the column around a 

pinwheel singularity, where OP from 0-180 degrees circles the singularity through all 360 degrees [eg 41]. OP 

also tends to form mirror reversals of the pattern between adjacent columns – most apparent where square ocular 

dominance columns are present [56]. The longer-axon patch cells, as well as forming patch to patch connections, 

also tend to link together short-axon cells that have similar OP “like to like” [51,60]. Outside columnar cortex 

orderliness is much less apparent. Yet, in small animals, where there is little order even in visual cortex, 

individual cells still show selective responses [61,62], like to like connections [63] and small areas of pinwheel 

structure [64]. Widely in cortex, whether clearly columnar or not, patch cells make patch to patch connections 

ubiquitously, forming many overlapping systems [53]. 

Earlier models for embryogenesis [65,66,67,68,69,70,71,72,73,74,75,76] were unable to provide any complete 

explanation of why columnar development takes place before visual experience [77] yet requires visual 

experience to maintain the organized pattern [78,79], nor why OP responses were not simple static responses to 

lines in the visual field, but varied systematically with the angle of attack, speed, and length of the moving 

stimulus line [80]. Empirically these effects could be explained by an association of individual neurons’ OP to 

their preferences for spatial and temporal frequencies [81] but the mechanism and functional significance of this 

dynamic linkage remained unexplained. 

1.3 Cortical dynamics 

Cortical information exchange has been studied largely via the electroencephalogram (EEG) and its relationship 

to cell action potential pulses. The spatial EEG is composed of both travelling waves and synchronous activity, 

and while there is general acceptance of the origin of the EEG from synaptic transmembrane currents [82], there 
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has been much controversy about the mathematical representation of the large scale wave processes 

[83,84,85,86,87,88,89,90,91,92,93,94] and their relationship to neuronal group interactions. Singer and 

colleagues helped to bridge this discontinuity of scale when they discovered that synchronous oscillating pulses 

around the 40 Hz gamma frequency link cells responding to separate stimulus features [24,25,26,27,28,95]. 

Synchrony is of importance in cognitive processes [96] and arises from local excitatory/inhibitory interactions 

[97]. The occurrence of wide fields of synchronous EEG and pulse activity means that, to have large 

representational capacity, the synchronous states must be somehow spatially partitioned. 

Understanding of these phenomena has been improved by their simulation. The power spectrum, 

frequency/wavenumber characteristics and evoked potentials of the EEG, and pulse synchrony, can all be 

reproduced using mass action modeling of neural masses [87,88,94,98,99,100,94,101,102,103]. Wave properties 

in these simulations are near-linear within their realistically low-average firing-rate normal operating range, and 

consistent properties have been demonstrated directly from electrocortical waves. Autoregression analysis of 

electrocortical (ECoG) activity exhibits thermal-like near-equilibrium activity, with energy equipartitioned 

among group resonant modes [86], and coherence analysis of ECoG from closely spaced intradural electrodes 

shows wave patterns explicable as collisions of travelling waves and the creation of synchronous fields. Spatial 

damping of the travelling waves is frequency-dependent, in accord with elimination of out of phase components 

in non-dispersive waves [104,88].  

Realistic simulations require bidirectional symmetric connections between neural masses for simulated 

synchrony to develop, because synchrony is produced by collision of wave-fronts, with dissipation of out-of-

phase wave components, and summation of their in-phase components – so signal exchange has to be 

bidirectionally symmetric to produce a stationary rather than a travelling wave. Yet, although bidirectional 

couplings occur much more than by chance [33], real neural connections are commonly one-way [34]. This 

apparent paradox can be resolved, since, in a sparse network with low degrees of separation, polysynaptic 

pathways of flow between neurons are prolific, allowing transient equilibria of bi-directional polysynaptic flux to 

create both the wide-spread synchrony seen at the EEG scale and the more restricted synchronies among groups 

of neurons.  

Recent considerations of synaptic dynamics indicate the ways in which transient equilibria may slowly give rise 

to more established connectivity [105]. Fast (spike-timing dependent plasticity, STDP) modifications, highly 

sensitive to dynamic adjustment on a short time-scale, pulse spike-to-spike, are continuous on a longer time scale 

with the Beinenstock-Cooper-Monroe (BCM) rule - itself further subject to slower “floating hook” adaptation. 

The synapses fast time scale adjustments appear to arise at least in part from competition with each other to 

establish relative efficacies [36].  

It remains necessary to explain how the transient fields of synchrony are related to the mesoscopic anatomical 

order. 
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1.4 Scope of theory 

We will treat the cerebral cortex as surrounded by a Markov blanket in its interactions with subcortical systems 

and the external environment – and the cells themselves as each within a Markov blanket, so that cell properties 

need be considered in minimum necessary detail. Our primary focus will be on intrinsic lateral connections of 

mesoscopic scale, without concern for the details of organisation in cortical depth, and on the connection profiles 

in primary visual cortex, but our intention is to formulate a model general enough to apply to all cortical areas. 

Our major assumption is that cells that succeed best in competition to survive apoptosis do so by virtue of cell 

body positions and synaptic couplings that best facilitate synchrony, supporting this assumption from two 

findings earlier cited - that synchronous firing protects dividing neurons from apoptosis [38] and that dividing 

neurons self-organize into small-world assemblies [40].  

2. Cortical dynamics 

2.1 Essential neuronal properties 

Mathematical aspects are discussed in Appendix A. The following features are essential: 

Summation of pre-synaptic flux at the dendritic membrane leads to zero-lag synchrony [102] - the equilibrium, or 

“ground state” in which all actively firing excitatory cells fire synchronously and in oscillating interaction with 

inhibitory cell pulses. 

Threshold pulse activation creates a sharp distinction between cells engaged in current network activity versus 

those currently in a subthreshold state. 

Competition among pre-synapses operating on a fast time scale and terminating on the same neuron determines 

their relative efficacy [36,106]. If the competition is of the “contest” type, rather than the “scramble” type [107] 

then the fastest firing synapses will shut down activity at other pre-synapses. 

2.2 Conditions for synchronous equilibrium  

At synchronous equilibrium, pre-synaptic flux is bidirectionally symmetrical, ie: φ௜௝(𝑡) = φ௝௜(𝑡) (1𝑎) 

where 𝜑௜,௝ are pre-synaptic flux rates – the rate of arrival of pulses sent to the pre-synapses terminating on 

neuron 𝑖 from neuron 𝑗, over all routes, (and vice-versa) weighted by the effective strengths of synaptic 

connection over all these routes. Expressed in terms of efferent pulses and synaptic gain factors leading to the 

pre-synaptic flow 𝜌௜௝ 𝑔௜௝𝜀௜௝𝑄௝ (𝑡) = 𝜌௝௜ 𝑔௝௜𝜀௝௜𝑄௜(𝑡) (1b) 

where 𝜌௜௝,௝௜ is number of synaptic connections for monosynaptic relay, and/or the equivalent density of 

connections over polysynaptic pathways, 𝑔௜௝,௝௜ is the equivalent slowly time-varying synaptic gain, 𝜀௜௝,௝௜ that of 

fast varying synaptic efficacy, and 𝑄௝,௜ are the efferent pulse rates of the two cells. 
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We will show that symmetry of all factors left and right in Eqn. (1b), maximizing synchrony, determines the 

patterns of connections emerging during embryogenesis. 

2.3 Analogy to equilibrium thermodynamics, and network dynamics 

Pre-synaptic flux is physically analogous to electric current, mechanical force, or heat flow. Summing the 

autocorrelations of all pre-synaptic flows gives a value, A, the total power of pre-synaptic flux generated by all 

cells, while C, the summed cross-correlations of flux between all pairs of cells, is the total synchronous 

presynaptic power (Appendix A). Their difference 𝐹 = 𝐴 − 𝐶 (2) 

is the power of dissipated pre-synaptic flux and, in steady state conditions, is equal to the power of extrinsic 

inputs and spontaneous (noisy) pulse generation. 

F is analogous to thermodynamic free energy, A to internal energy, and C to energy associated with entropy. 

Equation (2) requires that if A is in a steady state, F must be at a minimum if C is at a maximum. This defines a 

stable equilibrium, or attractor. In anatomical terms this means that stable equilibria are associated with 

bidirectionally symmetric connectivity and flow, thus maximizing cross-correlation. Conversely, if C is at a 

minimum, F is at a maximum and an unstable equilibrium exists, associated with asymmetric connectivity and 

flow. The stable equilibria are synchronous states, the unstable equilibria states with travelling waves; the latter 

acting as directed vectors between basins of attraction, and thus creating sequences of distinct synchronous 

states. This identifies the cortical dynamics with a heteroclinic network, exhibiting multi-stability and 

metastability [108] as distinct from other types of metastability [91]. 

If bidirectionally symmetric connections increase in number without increase in mean action-potential firing 

rate, total cross-correlation will increase while autocorrelation remains the same. This implies a progressive 

reduction in free energy, and should correspond to the emergence of anatomically realistic connectivity, along 

with subsequent consolidation of learning. 

2.4 The curse of dimensionality and distinguishable synchronous steady-states. 

If M of N neurons are above threshold then N!/M!(N-M)! steady-states are possible, including stable and 

unstable equilibria – but how many of these states could be functionally distinct? Representation of the steady-

states requires a space of very high dimension, implying a “flat” energy landscape subject to the “curse of 

dimensionality” [109] – that is, limitation of the states between which distinguishable transitions can take place 

with sufficient reliability. Thus, learning in the network requires the emergence of distinguishable states of 

synchrony from a larger set of indistinguishable states, and distinguishability is the inverse of cross-correlated 

function among separate sets of neurons. Put another way, distinguishable states are more orthogonalized, and 

thus representable in lower dimension than indistinguishable states. 

Both local dynamics, and the anatomical order, bear upon the distinguishability of firing states. Fast changes in 

synaptic efficacies will transiently partition distinguishable states with very small change in synaptic efficacies, 
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if the structural and slow synaptic gains are near balance. Since neurons tend to be interconnected with many 

near neighbors, but also with more widely scattered remote neurons, generally synchrony is high at short range 

among all cells, and distinguishability correspondingly low, while more distinguishable synchronous states will 

occur among neurons that are strongly connected but have more remote cell bodies – with implications for the 

organization of Perlovsky’s “crisp” versus “vague” representations. 

3. The embryonic process 

3.1 Formation of an ultra-small world, in populations of excitatory neurons with disparate axonal lengths. 

To aid survival neurons must minimize axonal lengths, forming an ultra-small world [110]. Excitatory cells 

occur in populations with widely disparate axonal lengths and differing axonal tree densities in different cortical 

areas [111]. We simplify the cell populations to two types only – a long-axon type we will call alpha cells, and a 

short-axon type called beta cells. Apoptosis must select short and long axon cells in requisite relative numbers so 

that the population average axonal density versus distance from cell bodies follows the required ultra-small 

world inverse power law for degree of separation (see Appendix B). There must then be a distance, X, from their 

cell bodies, at which alpha and beta cells are of equal axonal density, while at distances less than X beta cells 

have denser axonal trees and vice versa for alpha cells, influencing their favoured range of synaptic connection 

accordingly. Symmetry of the factors in equation 1(b) will then emerge as follows:  

3.2 Preferential development of bidirectional monosynaptic connections 

Monosynaptic connections will always have greater gain than any single polysynaptic pathway, so, if direct 

reciprocal axodendritic contact between neurons occurs, reciprocal monosynaptic links will tend to form 

preferentially where LTP timing in the STDP gate, interacting with action potential back-propagation in the 

dendritic tree [112] provides favourable pre/post-synaptic coincidence. 

3.3 Reciprocal selection of fast synaptic gains – 𝜀௜௝,௝௜ - in synchronous sets 

Reciprocally connected neurons will tend to offer each other reciprocal support in contest competition to 

establish maximum synaptic efficacies. Transient stable states will occur, in each of which 𝜀௜௝ = 𝜀௝௜. 
 3.4 Reciprocal formation and stabilisation of slow synaptic gains – 𝑔௜௝,௝௜ 
As symmetric STDP/LTP connections form, and strengthen in accord with the BCM learning rule, the negative 

feedback “floating hook” BCM property will cause pre-and post-synaptic pulse rates to approach equity, and 

slow synaptic gain to become equal in each direction of flow.  

3.5 Consequent mesoscopic anatomical geometry 

The establishment of bidirectionally symmetric synaptic connections maximizing symmetry and synchrony then 

forces:  

• Alpha cells to form reciprocal symmetric synaptic connections, either at very short distances of 

separation, or at distances of separation of their cell bodies equal to or greater than 𝑋, necessitating 
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aggregation of their cell bodies closely together, and the formation of patch-like connections at 

distances, 0, 𝑋, 2𝑋, … Regular tiling in hexagons, squares or triangles can develop, or irregular tiling in 

combinations and overlaps of these basic forms. 

• Beta cells to form synaptic connections at all distances less than 𝑋, creating local clusters of cells.  

• Synaptic connections between alpha and beta cells to develop at distances of separation equal to 𝑋, 

creating rings of reciprocal connection of radius 𝑋 around each alpha cluster, amongst the neighboring 

clusters of beta cells. Alpha/beta connections necessarily resemble 1:1 projections of a Euclidean plane 

to interlocking and cross-connected Mobius strips (see Appendix B) as the unique way that  

synchronous resonance can attain maximum.  

• And to further maximize resonance the adjacent beta clusters must receive projections from each other 

that approach mirror images. 

Growth simulations confirm the creation of these patterns. 

3.6 Growth simulations 

Figure 1 shows the outcome of growth simulations [113,114] using a mechanical force-equilibrium algorithm 

exploiting the physical analogy of mechanical force and pre-synaptic flux, to determine, firstly, cell body 

positions consistent with ultra-small world configuration, then those subsequently establishing  synaptic 

connectivity so as to maximise symmetric synaptic flux at equilibrium – that is, the cells that would survive 

apoptosis. A spectrum of outcomes develop from columnar to seemingly random, and although simulation 

outcomes can be quite different depending on the relative lengths of alpha and beta axons, the random-appearing 

outcomes are poorly resolved, but structurally equivalent to the columnar outcomes. 

 
Figure 1.  
Left. Growth simulations 
Optimum cell positions for survival of alpha (long axon, red) and beta (short axon, blue) pyramidal 
cells. 
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Outcomes are shown as functions of the axonal length of the cell types available for selection. Y-
axis, beta cell axonal lengths decrease (1/𝜆ఉ). X-axis, alpha cell axonal lengths decrease (1/𝜆ఈ). 
Inset black and white graphs show representative examples of the population density of alpha and 
beta cell axonal trees as functions of distance from cell bodies, marked at a distance, X, at which 
the density of their axonal trees is equal. 
Right. Similarity of structure in columnar and non-columnar growth. 
A non-columnar growth simulation outcome, with a columnar outcome inset. Beta cells form the 
black background, and white dots and lines alpha cells and connections. The distance, X, has been 
is normalised in the two instances and alpha cells separated by distance X highlighted in red.  

 

Figure 2 displays the way outcomes of simulation approximate real anatomy. Alpha cells can now be identified 

with superficial patch cells, and beta cells with local groups of short axon cells. The ubiquitous organization of 

patch-to-patch and like-to-like connectivity, the organization of short-axon cells within column centers, the 

organization of OP for slowly moving lines in monocular cortex and ocular dominance columns with OP 

pinwheels ranging 0-180 degrees over 360 degrees around singularities, the occurrence of OP linear zones and 

saddles, and mirror refection of OP particularly in ocular dominance columns – all are accounted for. 

 

Figure 2.  
Left. Superficial patch cells. 
A representative alpha cell (large red central spot) and patch connections. Surrounding zones of 
potential synaptic connection with other alpha cells have been delineated in light grey concentric 
circles. Dark grey patches occur where other alpha cells are positioned and able to make reciprocal 
connections, alpha to alpha, creating regularly spaced, typical patch cell connectivity. Alpha/beta 
synapses maximizing resonance with the central alpha cell with stimulation of a particular angular 
domain are shown as darkened blue areas of “like to like” connections. 
Middle. Local connectivity. 
From the same simulation, sparse beta cell connections consistent with the findings of Song et al. 
[34] have been marked in black or white, showing how interweaving networks occur. Some 
connections (shown as black and white dashed connections) result in partial closure rather than 
complete independence of the interpenetrating networks, so that structures analogous to sets of 
interconnected Mobius strips arise – as shown in the inset. 
Right. Reciprocal connections of patch cells to local cells. 
Top: fields of synaptic connections from alpha cells to beta cells are coloured red, green, and blue 
according to their origins from diametrically opposite, similarly coloured, alpha cells. These 
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opposite cells establish synapses at similar angles from the centre of the network of beta cells, on 
interpenetrating, but distinct parts of the beta cell network. 
Bottom: shows how wide development of alpha/beta connectivity, in accord with the top diagram, 
results in the creation of an OP map for slowly moving lines of a particular orientation shown in 
the colour/orientation key. With alpha cells in hexagonal array (left) patterns of neuron orientation 
preference seen in monocular visual cortex arise with imperfect reflection of OP between 
macrocolumns. With alphas in square array (right), orientation preference crosses column 
boundaries orthogonally, in mirror reflections typically seen in ocular dominance columns.  

4. Mature cortical function 

4.1 Post-natal modification 

After birth, the cortex must learn to assimilate sensory inputs and construct motor outputs, for which the ante-

natal synaptic framework provides an anatomically organized, rather than a random, scaffold.  

Taking the visual system as representative, images of a moving object received over sensory pathways are 

relayed by lateral patch connections to several macrocolumnar systems (local maps). The inputs to the local 

maps form a set of spatial and temporal samplings of the moving image over a short epoch, creating synchrony 

and favoring new synapse formation, so the two dimensions of spatial position and the two dimensions of 

velocity in the X and Y axes of the input stimulus become sampled into static synaptic connections, within the x 

and y axes of each of a set of clusters of beta cells (see Appendix C). Symbolically, as sets of samples in space 

and time 𝑋, 𝑌, ሼ𝑡 − ∆𝑡ሽ → ሼ𝑥, 𝑦ሽ, 𝑡 

This explains why columnar structure, although it appears antenatally without structured input, requires post-

natal structured input to retain its structure. Simulations of the relay of signals in this manner [113] account for 

the variation of OP with angle of attack, speed, and length of visual stimulus lines described by Basole et al., 

[80] - findings that contradicted earlier models of response preference emergence. The association of OP with 

spatial and temporal frequency preferences described by Issa et al. [81], is the Fourier representation of the 

effect.  

Conversely, by reversal of the directions of signal flow, static patterns of synaptic connections may be read out 

in response to focal activation by other learned inputs, as temporally organized patterns. ሼ𝑥, 𝑦ሽ, 𝑡 → 𝑋, 𝑌, ሼ𝑡 + ∆𝑡ሽ 

Thus, representations must progressively evince a high mutual information with representations in other cortical 

areas and the environment, the whole becoming a description of a unique experience of an environment’s 

specific spatio-temporal character, and of the individual’s sensing, doing and being, within that environment. 

 The synaptic patterns move far from equilibrium in the sense of Prigogine [115,116], so although short-term 

pulse and wave dynamics remain near equilibrium, free energy is progressively minimized, but entropy bounded 

(See Appendix C). 
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Figure 3 illustrates the formation of neural representations in synchronous sets in primary cortex, indicating that 

multiple neural representations, each of a slightly different stimulus, and each therefore of slightly different 

orientation and translations, and of either chirality, form in local interareal networks. Then relay to a secondary 

cortical area by topologically ordered, divergent and reciprocal cortico-cortical fibers results in spread via 

superficial patch fibers to local maps in a similar way to lateral spread in the primary cortex. Although all 

resemblance to the original sensory image appears lost in the secondary cortex representations, images have 

formed that preserve neighborhood relations in each of many diverging representations, spatially mixed with 

each other. Within the sparse connection system it can be seen that + and x marks, closely situated in the 

stimulus, become replicated when copied to many locations – but in each replicate, + and x remain closely 

adjacent, preserving topological identity. 

 
Figure 3. Representations and their relay within and between cortical areas. 
(This figure is schematic. No attempt has been made to represent the geometric transformations of 
an input image between retina and visual cortex.) Closely situated positions on an input stimulus 
are followed to their multiple representations in primary cortex, and onwards by cortico-cortical 
fibres to a secondary cortical area, where they undergo a second dispersal to multiple 
representations at the higher level. 
Top left: A stimulus (the image of an eagle moving across the visual field) is projected to primary 
sensory cortex by classical pathways. Lateral waves (shown as half-tones around the projection of 
the eagle) are propagated via the superficial patch connections. Two closely situated positions on 
the initial stimulus are designated by white + and x.  
Top middle: Dispersal to multiple synchronous fields in primary cortex creating multiple images 
as 1:1 projections of the input stimulus to each of the beta clusters, with conduction lags. 
Top right. After relay via divergent cortico-cortical fibres, further fields of synchrony are created 
in a secondary cortical area. 
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Bottom left: Results from simulations showing that apparent orientation preference of neurons 
varies systematically from the classical slowly-moving visual line result, with both the angle of 
attack of the moving bar and the speed with which the bar is moving.  
Bottom middle: Superimposed on a growth simulation background as yellow patterns, are pools of 
cells with synaptic linkages learned in response to their synchronous activation. Overlapping with 
each other within the sparse system of cellular connections, each represents a slightly different 
learned sample of a stimulus.  
Bottom right: Enlargement of a small segment of the activity at secondary cortical level, showing 
that topological identity, despite transformations and superpositions, is retained in the projections 
of the image initially delivered to the retina.  

4.2 Cortical computation and adaptive learning 

The almost coincident synaptic representations and the arrangement of interweaving connections demonstrated 

in Figure 3 are in line with Perlovsky’s dynamic logic. Throughout cortex, small locales store closely similar, 

continuously varying, bi-chiral, synaptic images. These locales are connected by longer-range cortico-cortical 

connections in a network of networks. Section 2.4 indicated that closely situated, and closely similar patterns of 

activation would be essentially indistinguishable consequent to the curse of dimensionality - or equivalently, 

each of the indistinguishable patterns might be regarded as concurrently active. Conversely, connections between 

distant locales may form synchronous systems that are more clearly distinguishable. This would permit parallel 

search toward a well distinguished synchrony maximum - a substrate for Perlovsky’s concept of the fusion of 

“vague” images higher and lower in the cortical information stream, into “crisp” images. In formation of the 

“crisp” image, the higher dimensional “vague” images fuse to a single, lower dimensional representation – a 

process well suited to optimization problems and similar to computation by entanglement among quantum states. 

Given this powerful means of associative learning, the free energy principle is itself sufficient to establish 

minimized surprise - but animals must also operate to maximize reward and enhance their survival. Innate 

subcortical mechanisms selectively consolidating species-appropriate learning and exerting cortex-wide control 

may perform this function [117,118,119,120,121,122]. Acting via transhypothalamic neurons, these systems 

reinforce synaptic consolidation on the basis of temporal contiguity, and survival relevance, rather than cortical 

locality. Thus the imperfect partitioning of “vague” images would enable multiple trials of learning to establish 

learning optima for organism survival, fusing the individual’s innate preferences with individual experience of 

causal relations in the environment, and of the individual’s actions. 

5. Conclusion 

5.1 Unity of fundamental principles and the mesoanatomy of the cortex. 

We have shown, starting from simple and well-established neuron properties, along with an assumed role of 

synchrony in shaping the outcomes of apoptosis, that much of the millimetric anatomy of the cortex can be 

explained. To the best of our knowledge the range of findings regarding mesoscopic anatomy and single unit 

selective responses, unified with simulations and experimental observations of synchrony and the EEG, is not 

achieved by any other theoretical account, nor do any specifically contradictory experimental data exist. 

Millimetric anatomical structures appear to be generated by, and are just those necessary, to permit near-

equilibrium, multi-stable, electrocortical dynamics. As the developing brain steadily increases the number of 
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bidirectional monosynaptic connections, a system of synchronous attractors forms. Free energy is minimised, 

and the system degrees of freedom diminish, as anticipated in the free energy principle. In post-natal life, this 

process continues, but is directed into specific learning, based upon sensory experience and selection by internal 

mechanisms. 

Response properties become organised in a systematic way that preserves adjacency of closely related synaptic 

representations,  offering a basis for cortical computation via the rapid gradient descent on synchrony with 

further dimensional reduction, minimizing computational complexity consistent with dynamic logic, while the 

strengthening of selected synapses sets an upper bound on the entropy of the sensory states that are represented. 

The complementarity of both Friston’s and Perlovsky’s theoretical work with the present work mutually supports 

all three, and together they constitute an elementary account of basic cortical organization. 

5.2 Some comparisons with existing AI 

Hopefully this account further assists comparisons between computational neuroscience and systems biology 

[123]. The filtering properties of individual neurons resemble those applied in convolution neural networks 

(CNNs) that utilize properties of feature filtering in primary visual cortex neurons discovered over fifty years 

ago [58], but the filtering properties have additional capacity for generalized representation and association of 

spatio-temporal stimulus patterns, and abstracted combinations of these at higher levels, while maintaining 

topological order. It is this orderliness that permits the matching of “vague” images into “crisp” form – a 

property not generally characteristic of conventional architectures, and perhaps more suitable for embodied 

operation. Fixed points of the oscillating synchronous field are analogous to the point-attractors with constant 

neuron firing rate states of CNNs and attractor neural networks (ANNs) [124]. Cortico-cortical relays play the 

same role as ascribed to feed-forward projection in perceptrons [125] with the added property of feedback to the 

input layer as introduced to CNNs by Sabour et al [126]. No direct equivalent of the back-propagation algorithm 

[127] is apparent, but the establishment of selected reciprocally resonant sets between cortical areas may have 

much the same effect. 

5.3 Further testing 

The relative lengths of axonal connections at millimetric scale in different cortical areas have not yet been 

estimated with sufficient precision to show that the degree of column formation shown in our growth simulations 

actually matches the variations in real cortex. Axonal lengths are distributed, rather than conforming closely to 

our assumption of distinct long and short-axon populations, but this does not pose any fundamental objection to 

the model. A relatively easily tested prediction, in primary visual cortex, is that long- axon patch connections 

should terminate on short-axon cells in the predicted 1:1 mapping topology. That is, patch connections reaching 

“like to like” from patch cell bodies on opposite sides of a column should terminate on different cells, yet all 

upon cells with common orientation preference. A more elaborate opportunistic experiment on the conformation 

of receptive fields in closely situated cells in primary sensory cortex has yielded supportive results [128]. 
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The generation of co-synchronous fields in cortex also appears likely to produce effects observed by fMRI/MEG 

in support of Perlovsky’s computer modelling. Repeating the experimental protocol of Bar et al, [16,17], instead 

using coherence and phase estimates of EEG as the outcome measure, could establish the essential analogy of 

the artificial and proposed real networks. 

Appendices 

Appendix A. Dynamics 

State equations for polysynaptic signal flow in cortical neurons. 

Generation of pre-synaptic flux 

𝜑௜௝(𝑡) =  ±𝑔௜௝𝜀௜௝𝜌௜௝𝐴௜௝ ቆ𝑡 − |𝑖 − 𝑗|𝜈 − ቇ  𝑄௝ ቆ𝑡 − |𝑖 − 𝑗|𝜈 ቇ (A1) 

𝜑௜௝ is pre-synaptic flux conveyed from the j-th to the i-th neuron by polysynaptic relay, including monosynaptic 

relay as a special case. 𝑄௝ is the efferent pulse rate of the j-th neuron. 𝜈 is the speed of conduction between j and i over monosynaptic connections (if any).  

The convolution 𝐴௜௝ ቀ𝑡 − |௜ି௝|ఔ − ቁ  𝑄௝ ቀ𝑡 − |௜ି௝|ఔ ቁ expresses effects of delayed arrival of pulse transmission 

through the polysynaptic pathways joining j to i, and may itself be time-varying. 

± indicates whether the net effect of the pre-synapse(s) is inhibitory or excitatory. 𝜌௜௝ is number of synaptic connections from j to i, for monosynaptic relay, or the equivalent gain over 

polysynaptic pathways, or the summed gain over both types.. 𝑔௜௝ is slow time-variation value of synaptic gain [105,129,130]. 𝜀௜௝ is fast-variation synaptic efficacy, subject to pre-synaptic “contest” competition, with outcomes determined 

by minima of 

𝐸௜(𝑡) =  ෍ 𝐵௝௞𝜑௜௝𝜑௜௞௜௝,௜௞ + ෍ 𝜀௜௝𝜑௜௝௝ (A2) 

𝐵௝௞ describe the competitive and cooperative interactions of synapses carrying pulses from neurons 𝑗 and 𝑘 on 

the afferent dendritic membrane, and steady-state efficacies, 𝜀௜௝, of the afferent synapses are given as 𝜀௜௝ ∈ ൛𝜀௜௝ൟ = arg min 𝐸 

Post-synaptic depolarisation. 𝑉௜(𝑡) =  𝐷(𝑡 − 𝜏) ∗ (𝜑௜଴ + ෍ 𝜑௜௝௝ )(𝑡) (A3) 
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𝑉௜ is the post-synaptic potential generated by afferent synaptic flux in the i-th neuron. 

The convolution 𝐷(𝑡 − 𝜏) ∗ (𝜑௜଴ + ∑ 𝜑௜௝௝ )(𝑡) expresses the effects of delays due to dendritic conduction in the 

relay of synaptic potentials to pulse generation. 𝜑௜଴ is afferent flux to the i-th neuron from external sources. 

Generation of action potentials 𝑄௜(𝑡) = 𝑓ఏ൫𝑉௜(𝑡)൯ (A4) 𝑄௜ is the efferent pulse rate of the i-th neuron. 𝑓ఏ is a sigmoid-like function including effects of reversal potentials, receptor adaptations, and threshold for pulse 

generation. 

Generation of synchrony and minimization of free energy. 

Where Φ௜௝,௝௜ are the sums of synaptic flux in opposite directions of flow between all pairs of neurons, their 

difference can be expressed as a Lagrangian 𝐿 = Φ௜௝ − Φ௝௜ = ቀ൫+Φ௜௝௘௘൯ − ൫+Φ௝௜௘௘൯ቁ + ቀ൫−Φ௜௝௜௜ ൯ − ൫−Φ௝௜௜௜൯ቁ + ቀ൫−Φ௜௝௘௜൯ − ൫+Φ௝௜௜௘൯ቁ (A5) 

Superscripts ee, ii, ie, ei indicate flux between excitatory and inhibitory cells respectively. 

According to the principle of least action the system is in equilibrium when 𝐿 → 0, requiring +Φ௜௝௘௘(𝑞, 𝑞ሶ )(𝑡) = +Φ௝௜௘௘(𝑞, 𝑞ሶ )(𝑡) (A6) −Φ௜௝௜௜ (𝑞, 𝑞ሶ )(𝑡) = −Φ௝௜௜௜(𝑞, 𝑞ሶ )(𝑡)     −Φ௜௝௘௜(𝑞, 𝑞ሶ )(𝑡) = +Φ௝௜௜௘(−𝑞, −𝑞ሶ )(𝑡)   
where 𝑞, 𝑞ሶ  represent displacements from mean levels of pre-synaptic flux, and their velocities of displacement. 

These conditions are met when all cells fire with constant pulse rates, or excitatory cells fire synchronously, 

inhibitory cells fire synchronously, and excitatory and inhibitory cells fire with a 180 degree phase difference. 

For n directed synaptic flows between pairs of neurons, 

𝐴 = 12 ෍ 1𝑇 න 𝜑௜௝ଶ (𝑡)𝑑𝑡்
଴

௡
௜௝ (A7) 

is the half-power of pre-synaptic flux generated by all cells. The cross-correlation function for all pairs of cells 

𝐶 = ෍ 1𝑇
௡ଶ

௜௝,௝௜ න 𝜑௜௝(𝑡)𝜑௝௜(𝑡)𝑑𝑡்
଴ (A8) 

is the total synchronous pre-synaptic power. The difference 
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𝐹 = 𝐴 − 𝐶 (𝐴9) 

is analogous to thermodynamic free energy, A to internal energy, and C to energy associated with entropy. 

Appendix B. The developmental process 

Formation of an ultra-small world, in populations of excitatory neurons with disparate axonal lengths 

Where there are two discrete short-axon and long-axon populations, the cells surviving initial apoptosis must do 

so in proportions satisfying an inverse power law for the average density versus range from their cell bodies (as 

proxy for degrees of separation) of their axonal trees, and do so with individual axonal trees that decline in 

density exponentially with distance – ie 𝜌௜௝,௝௜ ∝ |𝑖 − 𝑗|ିଶ ≈ 𝑁ఈ𝜆ఈ𝑒ିఒഀ|௜ି௝| + 𝑁ఉ𝜆ఉ𝑒ିఒഁ|௜ି௝| (B1) 

where 𝑁ఈ is the fraction of excitatory neurons with longer axons (alpha cells) 𝑁ఉ is the fraction of excitatory neurons with shorter axons (beta cells) 𝜆ఈ is the inverse length of the longer axons 𝜆ఉ is the inverse length of the shorter axons 

Development of local maps 

At an axonal range 

𝑋 = 𝑙𝑛 ൬𝑁ఈ𝜆ఈ𝑁ఉ𝜆ఉ ൰𝜆ఈ − 𝜆ఉ (B2) 

the population density of alpha and beta cell axonal trees is equal. Projection of alpha cells to each of the beta 

networks as resonant 1:1 maps can be represented as projection of a Euclidean plane to Reimann surfaces: 

𝑃 → ൜𝑝 = ±𝑝ᇱ ൬ (𝑃 − 𝑝଴)௡|𝑃 − 𝑝଴|௡ିଵ൰ + 𝑝଴ൠ (B3) 

where 𝑃 are complex-number network positions of alpha cell bodies, p are network positions of beta cell bodies 

within a cluster centered at 𝑝଴, and ±pᇱ determines the chirality, scale and orientation of each local map. with 

magnitude of 𝑝ᇱproportional to 𝑋, and the diameter of each beta cluster approximately 2𝑋. 

The order, n, is the multiplication of angle in the 𝑃 plane to angle of projection onto the Riemann surface – and, 

equivalently, the number of times the beta cell network is folded within itself before the network closes, and 

thus also a measure of the number of synaptic contacts that can be made in a continuous network. Realistically, 

such networks would not be ideal, but partially closed, and cross-linked with other partially formed networks.  
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Since alpha-beta connections are made in arcs of radius X, the connections from alpha cells diagonally opposite 

from each other across a beta cell cluster must project connections to beta cells close to a perpendicular diagonal 

- that is, 𝑝ᇱ ∝ √−1 𝑋  - a condition met only for positive integer values in n. For n = 1, +𝑃 → +𝑝 and −𝑃 → −𝑝, 

and the input maps take simple Euclidean form. For n = 2, +𝑃 → +𝑝 and also −𝑃 → +𝑝, and the maps are 

projections of a Euclidean plane onto a Mobius strip For n = 3, 5, 7…, and for n = 4, 6, 8…, respectively, 

redundant, overlapping, and cross-linked, Euclidean-like, or Mobius-like solutions can exist. Because of their 

collectively greater continuous extent of beta cell connections, maximum resonance requires an ensemble of 

cross-linked Mobius, and  Mobius-like, mappings to form.  

Adjacent maps must have opposite chirality, and receive projections from each other that approach mirror 

images, so  𝑝ଵᇱ ≈ −𝑝ଶᇱ (B4) 

in adjacent local maps, 1 and 2. 

Appendix C. Post-natal cortical function 

Intra-areal interactions – storage and readout. 

Images of a moving object, O, projected to primary cortex over sensory pathways and relayed by lateral patch 

connections to each of the local maps, can be represented by 

𝑂 ቆ𝑃, 𝑡 − |𝑃 − 𝑝|𝜐 ቇ → ሼ𝑜(𝑝)ሽ, (𝑡) (C1) 

Where 𝜐 is the electrocortical wave velocity. 

The two dimensions of spatial extension and the two dimensions of velocity in the X and Y axes of the input 

stimulus become compressed to two dimensions of static synaptic connections 

– viz: 𝑂൫𝐾௫, 𝐾௬, 𝑉௫, 𝑉௬൯ → ൛𝑜൫𝑘௫, 𝑘௬൯ൟ (C2) 

where Kx, Ky, Vx, Vy are the extensions and velocities of stimulus movement in the X and Y axes of receptor 

cortex at the large scale, and kx, ky are extensions of the image formed in a given local map by the resulting 

synchronous field. 

Doppler shift in the relay of waves via the superficial patch system alters the metric of the local representations: 

𝑘௫ ∝ 𝜐𝜐 ± 𝑉௫ 𝐾௫   
and 𝑘௬ ∝ 𝜐𝜐 ± 𝑉௬ 𝐾௬   
This process is capable of operating in reverse, 
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ሼ𝑜(𝑝)ሽ, (𝑡) → 𝑂 ቆ𝑃, 𝑡 + |𝑃 − 𝑝|𝜐 ቇ (C3) 

permitting reading a stored synaptic pattern into a timed sequence of output. 

Learning and bounded entropy 

The effect of learning is to strengthen specific bidirectional connections, contributing to the magnitude of cross-

correlations (eqn A8) relative to the autocorrelations (eqn A7). So, as learning progresses, entropic energy 

increases, and free energy decreases. Concurrently, learned behaviors become more probable than equiprobable 

random behaviors, and some behaviors very improbable - so that entropy decreases, moving from Boltzmann-

like, 𝑆 = 𝑘஻𝑙𝑛Ω 

where Ω is the number of equiprobable synchronous states, to Gibbs-like, 𝑆 = 𝑘௕ ෍ 𝑝௜ 𝑙𝑛𝑝௜ 
 where 𝑝௜ are the (unequal) probabilities of the learned states. 
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