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Steady states and global dynamics of electrical activity in the cerebral cortex are investigated

within the framework of a recent continuum model. Tt is shown that, for a particular physiologically

realistic class of models, at most three steady states can occur, two of which are stable. The global

dynamics of spatially uniform activity states is studied and it is shown that, in a physiologically

realistic class of models, the adiabatic dynamics is governed by a second-order differential equation

equivalent to that for the motion of a Newtonian particle in a potential in the presence of friction.

This result is used to derive a simplified dynamical equation in the friction-dominated limit. So-

lutions of these equations are compared with those of the full global dynamics equations and it is

found that they are adequate for timescales longer than approximately 100 ms provided dendritic

integration times are less than approximately 10 ms.

PACS: 87.22.Jb, 87.22.As, 87.10+e

I. INTRODUCTION

Recently we developed a continuum model for the
propagation of electrical activity in the cerebral cortex
[1]. This model traced the evolution of quantities such
as the neuronal firing rate, averaged over volumes large
enough to contain many neurons, as in several previous
works [2-9]. Both excitatory and inhibitory neuronal
populations were included, as were the effects of non-
linear neural responses, temporal integration in the den-
drites and propagation time delays in the axons. This
model allowed us to write down equations for dynam-
ics, steady state solutions, and dispersion and stability
of linear waves.

The above model did not include the effects of feed-
back on the basic parameters of the cortex, such as the
threshold potential for neuronal firing, and the effective
strengths of coupling between various neuronal popula-
tions. Such feedbacks are known to be of central impor-
tance in the dynamics of the actual cortex: the state of
arousal (e.g., relaxed vs. alert) strongly affects the corti-
cal response to stimuli as measured by electroencephalo-
grams (EEGs), for example [10]. Such responses are nor-
mally termed evoked response potentials (ERPs). These
responses depend not only upon fast cortical responses
on timescales well below 100 ms (e.g., voltage-dependent
changes in ion conductivities of neuronal membranes),
but on feedbacks that evolve over longer intervals (e.g.,
the action of chemical neurotransmitters) [11].

Another area in which feedbacks are of importance 1s
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in the onset and termination of seizures. It is likely that
the cortex operates in a state close to marginal stability
[1] so as to be stable, but not so stable that all interesting
behavior is suppressed. Normal subjects are not prone
to spontaneous seizures, whereas in epilepsy, for example,
the cortex can undergo a transition to a seizure state in
which all the neurons are firing at far above their normal
rate. Such seizures are not permanent — some feedback
mechanism acts to return the brain to its normal state
after seconds or minutes [6,10].

The purpose of the present work is to understand bet-
ter the steady states and dynamics of a generalized ver-
sion of the model introduced in our previous work [1].
In Sec. II we study the possible steady-state solutions
of the generalized model, deriving a steady-state equa-
tion and limits on the maximum number of steady states
in certain cases. These steady states, and their basins of
attraction, determine the qualitative dynamics in the ab-
sence of feedback, and provide strong constraints on the
dynamics more generally for slow feedbacks. In Sec. IT1
we study how the steady states and their interrelation-
ships depend on the underlying parameters of the model,
demonstrating that a class of models that is particularly
plausible physiologically has simple properties in this re-
spect, possessing only three steady states.

Many observations of electrical activity in the cortex
are made at relatively coarse spatial scales. EEGs, for
example, often use scalp electrodes separated by several
cm, while most short-scale features are filtered out as
a result of the conductivity of the cerebrospinal fluid,



skull, and scalp in any case [6]. Hence, in Sec. IV, we
study the large-scale dynamics of the cortex. Further-
more, we do this in a simplified way by specializing to
adiabatic dynamics on timescales much larger than the
dendritic integration time, which is of order 5 — 10 ms
[1,4]. We show that the spatially uniform global dynam-
ics of the cortex can be described by an equation that is
equivalent to that of a Newtonian particle moving under
the influence of friction in a potential whose minimums
define the stable steady states of the system. When fric-
tion dominates it is also possible to write down a simpli-
fied first-order equation for the adiabatic dynamics in the
governing potential. Numerical results show that these
adiabatic equations approximate the dynamics well for
timescales exceeding ~ 100 ms. They will enable the
qualitative dynamical effects of various types of feedback
to be determined by looking at their effects on the po-
tential and the resulting “forces” on the system. This
ability is relevant to any analysis of feedback processes
that adiabatically modify the basins of attraction of the
steady-state solutions of the dynamical equations. Faster
feedback mechanisms also interact with the basins of at-
traction, but an adiabatic approximation is not possible.

II. STEADY STATES OF THE CEREBRAL
CORTEX

In this section we categorize the steady state solutions
of our dynamical model of the cortex [1]. Tn Sec. TT A we
briefly review the dynamical equations themselves. Sec-
tion IT B generalizes our earlier fixed-point analysis [1]
and derives a single fixed-point equation whose solutions
determine the steady states. Section II C discusses the
fixed points in general and in some special cases where
their numbers are strictly limited. Finally, necessary con-
ditions for the occurrence of multiple stable steady states
are derived in Sec. IT D. The mathematical analysis pre-
sented in this the latter parts of this section is essential
to understanding the physical behaviors studied in Secs

IIT and TV.

A. Dynamical Equations

In this section we first outline the main relevant results
of our recently developed wave-equation formulation of
cortical dynamics [1]. In a previous paper [1] we devel-
oped a set of nonlinear equations for cortical dynamics in
the continuum limit. These equations incorporated ex-
citatory and inhibitory neurons, dendritic integration of
inputs to a given neuron, finite axonal propagation ve-
locities, and the nonlinear relationship between inputs to
a neuron and its firing rate. In all cases, the dynamical
quantities are assumed to be averaged over a volume large
enough to contain many neurons but very small relative

to the whole cortex. This continuum approximation is
easy to justify as there are ~ 10' neurons in the cortex.
The first of the central equations of our model is

Qe,i =0 (Ves), (1)

which relates the mean firing rates Q. and @; of neurons
(the pulse densitiesin neurophysiological terminology) to
the applied potentials V., and V;, where ¢ and 7 denote
the excitatory and inhibitory populations. The function
o(xz) represents the fraction of neurons that will fire at
or below an incident potential z; we assume that it is the
same monotonic increasing function for both neuronal
populations, with the following properties:

xEr_noo o(x) =0, (2)
xli)nglo o(x)=1. (3)

In general ¢ can be written in the form

xr
o(x) :/ o' (u)du, (4)
— 00
where ¢’(u) is a nonnegative, singly peaked, integrable,
bell-shaped function, which we will assume to be sym-
metric about its peak. We also assume that the first few
derivatives of o and its inverse are continuous. If we work
in V. ; units in which the full width at half maximum of
o 1s of order unity, we can conclude that the maximum
of do(Ve ;)/dVe ; is also of order unity, since (3) and (4)
must be satisfied. Figure 1 shows an example of ¢ and its
first three derivatives [the specific form used is the one
employed in Secs TIT and TV, defined by (33) below].
The quantity V. ; is defined to be the neuronal poten-
tial at the cell body where conversion to neuronal pulses
takes place after inputs have been summed and filtered
through the dendrites. A good approximation to V. ; is
given by [1]

af
Vei=geim——[Uei — Weil, 5
§= i U = W, ) )
dUei
— = Qae,ai — Uei: 6
et = Quei = ol )
dWei
— = Qae,ai — Wei: 7
Vel = Quei = W )

where QQqe,qi Tepresent mean arrival rates of input pulses
at the dendrites, g. ; are dendritic gain factors, and o and
[ are constants parametrizing the dendritic response to
an impulse. In effect dendritic propagation smears out
the temporal response over a timescale ~ max{a~!, 371}
and the dendritic tree acts as a low-pass filter. Equation
(5) generalizes our previous corresponding equation [1]
by allowing g. and ¢; to differ.

Outgoing pulses from each neuron propagate along its
axon and axonal tree at a characteristic velocity v. As-
suming an isotropic distribution of axons with approx-
imately exponentially distributed ranges (see Ref. 1 for
the exact distribution), this propagation can be modeled
by a wave equation for the corresponding potentials ¢, ;:
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where v, ; = v/r.; and r.; are the characteristic ranges
of the axons [1].

The incident potentials Qqe q; at a particular location
comprise contributions from the wave potentials ¢. ; and
inputs ¢, from outside the cortex. This leads to the final
underlying equations of our model:

Que = Gesds + AeePe — Aei P, (9)
Qai = ais¢s + aie¢e - CL“QSZ (10)

Here, the constants a,,, are the fractional synaptic den-
sities associated with excitatory, inhibitory, and subcor-
tical inputs ¢, ; s to excitatory and inhibitory neurons. A
change of notation from some of our previous work [1,12]
is that ¢, now represents all external inputs to the cor-
tex, thereby combining the quantities Qs and @, used
previously to denote time-varying and static inputs, re-
spectively. The coefficients a., ;s also subsume the four
coefficients M. ; and p.; that previously parametrized
the contributions of time-varying and static inputs. Nor-
malizations of the a,,, are discussed in Sec. 111 B.

B. Steady State Equation

Tf we set all the time derivatives in (6) — (8) equal to
zero and, furthermore, seek spatially uniform solutions
of these equations, we find

‘/e,i = ge,iQae,ai: (11)
¢e,i = Qe,i7 (12)

with (1), (9), and (10) unchanged, except that ¢, is now
understood to be the time- and space-independent com-
ponent of ¢,.

Equations (1) and (9) — (12) now yield

Vo = beyds 4 beea (Vo) = beio(V7), (13)
Vi = bisds + biea(Ve) — bia(V;), (14)

after eliminating ¢e ;, Qe 5, and Qe qi, and writing by, =
Imamn (> 0) for compactness. Equation (14) implies

Ve=0""(y), (15)

y= o[V b (Vi) — biso): (16)

1€
(y = Q¢). This solution is unique because we find that
the right side of (16) is monotonic increasing with V;.
Hence, there is a unique value of o (V%) for any value of
Vi. The function o(V.) = y is also monotonic increasing
with V. (i.e., it is one-to-one), so there is a unique inverse
v, in (15).

Tf we substitute (15) into (13) we find that the steady
state values of y are given by the roots of f(y), with

FY) = 07 (Y) = beeyy + beir (Vi) — beshs. (17)

Steady state values of other variables then follow from
application of (1), (9) - (11), (12), and (15). The follow-
ing subsections are concerned with the properties of (17)
and its roots.

C. Number of Steady States

Looking at (17), we note that y and (V) are bounded
on the interval (0,1), whereas ¢~'(y) is unbounded (see
Fig. 2), with

lim o7 !(y) = o, (18)
y—+1-

li -1 = —00. 1
Jim, o™ y) = —e0 (19)

[Of course, o~ 1(y) is undefined outside the open interval
(0,1).] Hence, f(y) runs from —co to oo as y runs from 0
to 1. Since f(y) is real and continuous, this implies that
there is at least one root and, in general, an odd number
of roots, each corresponding to a cortical steady state.

If f has N zeros and is continuous and differentiable,
then df /dy must have at least N —1 zeros. If we can show
that df /dy has no zeros, then f must have exactly one.
If we can show df /dy has at most 2,4, ... zeros, then f
must have at most 3,5, ... zeros, respectively.

We can use (16) to eliminate o(V;) from (17), giving

fy) = o7 (y) + Ay — BV; + Cs, (20)
A = be[j& - bee; (21)
B = bei /by, (22)
beibis
C = - bes~ (23)
bi;
We then find
df  do”'(y) dv;
—=—>4+A-8B 24
dy dy * dy’ (24)
dO'_l(y) Bbie
= —+ A — T v (25)
dy 1+ biin#l

Some general properties of f and its derivative are that
(i) B > 0, whereas A and C' can have either sign, (ii)
do=1(y)/dy is symmetric about y = 1/2 (see Fig. 2),
with

Iim

26
y—0+t dy ( )

y—+1-

because of the properties of o(y) discussed in Sec. TT A,

(iii)

do=(y)

o >0 (27)



for all y, and (iv) the denominator of the term involv-
ing B in (25) is always > 1 because o(V;) is monotonic
increasing with V; (see Fig. 1); i.e.,

do (Vi)
dV;

> 0. (28)

We now use the above results to determine the maxi-
mum number of roots of f(y) in some special cases.
Tf beibie = 0, and the other by, are arbitrary, (25)
implies
-1
dfy) _do”(y) _, (29)
dy dy

Equation (29) has either 0 or 2 roots, since the first term
on the right is strictly positive and has only a single min-
imum (at y = %), while the second is constant. Hence,
f(y) has at most three roots.
Equation (17) yields
dfly) _ do”'(y)  , do(Vi)
dy — dy “dy

— bee. (30)

The first two terms in this equation are strictly positive,
so 1t has no roots if b, satisfies

boe < % —o(1), (31)

min

with the other by, arbitrary. In this case, f(y) has ex-
actly one root. This can also be seen by noting that the
sum of the first two terms in (17) is monotonic increasing
in this case, as is the third term — hence, (17) has just
one root.

D. Conditions for the Occurrence of Various
Numbers of Steady States

Here we list several necessary or sufficient conditions
for the occurrence of 1, 3, or 5 or more roots. We will ap-
ply these conditions to a specific version of ¢ in Sec. III.

1. Sufficient Condition for Fxactly One Root

A sufficient condition for there to be exactly one root
is that f(y) be monotonic increasing. This is certainly
the case when b, satisfies (31).

2. Conditions for Three or More Roots

A necessary condition for there to be at least three
roots is that df(y)/dy be negative for some y, and hence
that this quantity change sign at some point. Differenti-
ation of (17) yields

dfly) _do™'(y)

dy dy

+ biebeio'/(‘/i)
T+ bio (Vi)

(32)

where primes denote differentiation with respect to V;.
The first and last terms in (32) are nonnegative, so a
necessary condition for f(y) to change sign is (31) with
the inequality reversed, since the final term in (32) ap-
proaches zero at large |V;].

The function f(y) is bounded above and below by the
functions obtained by replacing ¢(V;) in (17) by 1 and 0,
respectively. We denote these functions, shown in Fig. 3,
by fi(y) and f_(y), respectively. A necessary condition
for f(y) to have three or more roots is that the maximum
of f4 be positive and the minimum of f_ be negative (sat-
isfied in the example in Fig. 3). A sufficient condition is
that the maximum of f_ be positive and the minimum
of f4 be negative (not satisfied in the example in Fig. 3).

Tf b;ebe; = 0, f(y) has at most three roots, as shown in

Sec. 1T C.

3. Necessary Conditions for Five or More Roots

For f(y) to have five or more roots, all necessary con-
ditions for three roots must be satisfied. In addition,
df (y)/dy must have a positive value at some point in zone
TT between the turning points of fi(y), as illustrated by
the solid curve in Fig. 3. This curve also shows that this
is not a sufficient condition.

I1I. PARAMETER DEPENDENCE OF STEADY
STATES

When studying the dynamics of the cortex, stable
steady states sit in basins of attraction for adiabatic
dynamics, while unstable ones define the boundaries of
these basins. Hence, a key step in understanding cerebral
dynamics systematically is to characterize the regimes of
parameter space in which there are 1, 3, or > 5 roots of
the steady-state equation (17).

In this section we specialize to the particular form of
sigmoidal function used in our previous work and in the
illustrative figures in earlier sections [1,7-9,12,13]

1
A4 exp[-C(Vi = Vo)]’

(Vi) (33)

where C' and V are constants. The inverse of ¢ is given

by
1

0_1(3/) =W+ C

Iy —In(1 = y)). (34)
In the appendix we show that this form of o satisfies all
the conditions assumed in Sec. II.

We wish to study the dependence of the number of
roots on the parameters of our model, particularly the
bmn and V. We do this in a simplified way by restricting



the interrelationships between the b,,, on physiological
grounds. This reduces the dimensionality of parameter
space, including three dimensions corresponding to three
independent b,,,. The root structure is then studied as a
function of the b,,, for various values of the other param-
eters. The aim of this simplification is to obtain insight
into a physiologically realistic class of dynamical models.
Ultimately, we aim to compare the dynamics of these
models directly with experiment.

A. General Topology of Root Structure

We want to distinguish not only the number of steady
states of the cortex for specific parameters, but to clas-
sify whether these are solutions corresponding to high
Q. (e.g., seizure states) or low Q. (e.g., normal corti-
cal states). We do this by counting the number of roots
between and beyond the pair of turning points of fi(y)
(zones labelled T, TT, and TIT in Fig. 3), after separating off
the case where fi(y) is monotonic increasing and these
zones are undefined. This classification is crude in that
the turning points are not fixed with respect to variations
of the by,,, but provides a useful coarse-grained catego-
rization. This analysis also proves to be useful in con-
straining the types of adiabatic dynamics that are possi-
ble in the system. We will see in Sec. TV that f(y) has
dynamical significance beyond the positions of its roots:
it is the gradient of an effective potential energy function
in a physiologically realistic model of the cortex.

We label the case where f_(y) is monotonic increasing
1A, where the number denotes the number of roots and
the letter is an arbitrary label for the subcategory. The
various other cases and their category labels are given in
Table I, where they are distinguished by the numbers of
roots in zones I, II, and IIT of Fig. 3. The possibilities
listed (plus class 1A) are exhaustive, because f(y)—f- (y)
is monotonic increasing, which means that there can only
be 0 or 1 roots of f(y) in either zone T or TTI. Figure 4
illustrates the appearance of f(y) in each case.

As the underlying parameters of f(y) (e.g., the bmp
and V) are changed, its roots appear or disappear in
pairs. The only exceptions occur at sets of zero mea-
sure in parameter space where four roots can appear or
disappear simultaneously, or one pair can appear just as
another disappears. Hence, 1-root and 5t-root zones of
parameter space can touch at most at a set of measure
zero. Similar arguments regarding df (y)/dy imply that
the 1A zone can touch the 3-root zone at most at a set
of measure zero. These and analogous arguments restrict
the connectivities between zones to those shown in Fig. 5,
which omits connections of zero measure. The key signif-
icance of this figure is that it constrains the paths that
the system can take as 1ts dynamics evolve under the in-
fluence of adiabatic feedbacks. For example, no robust
(i.e., insensitive to slight changes in parameters) feedback
mechanism can carry the system from the 5-root zone to

the 1-root zone without passing through the 3-root zone.

B. Random Connectivity Model of Synaptic
Densities

In the simplest model for the development of intercon-
nections between populations of inhibitory and excita-
tory neurons, the number of connections is proportional
to the number of synapses available [7,13,14]. We term
this the random connectivity model, but stress that other
possibilities are also consistent with current physiological
knowledge. Suppose excitatory neurons have fractions f4
and fp, respectively, of the total numbers of axonal and
dendritic synapses in the cortex, while inhibitory neurons
have fractions 1 — f4 and 1 — fp. Suppose further that a
fraction € of all connections to cortical dendrites originate
outside the cortex. Then, assuming random connectivi-
ties, the 2nd column in Table IT lists the fractions F,,,
of connections from neuronal population n to population
m, where the subscript s denotes subcortical origins. The
3rd column lists the corresponding coefficients a,,, that
appear in (9) and (10). These are obtained from the Fy,,
via

an

Ampn = m: (35)

so that

> tmn =1, (36)

m

for all n. Equation (36) imposes a normalization that
was neglected previously [1,7-9,12], but which is required
to ensure that inputs to neurons are correctly weighted.
(This did not make a large difference in these earlier
works, which were primarily concerned with excitatory
effects and which had " a@cn, & 0.9.) This normalization
applies to all models, not just the random connectivity
model. One sees from Table II that a., = a;, for all n
in the random connectivity model.

In earlier sections, the a,,, entered the cortical equa-
tions in the combination b,,, = ¢mdmn, Where the g,
were synaptic gains. This model is too simple to study
dynamical feedback, which can selectively affect the ef-
fective gain at synapses between particular populations
of neurons, rather than at all synapses at once. We thus
generalize it by noting that every synaptic connection in-
volves one neuron acting on another. A reasonable phys-
iological approximation to the gain at a junction between
an incoming neuron of population n and an outgoing one
of population m is thus to factorize it into the product of
an absolute strength |s,| of the stimulus per unit incom-
ing signal and a strength of response /,,, per unit stimulus
[13]. Physiologically, |s,| is proportional to the amount
of chemical neurotransmitter released per unit incoming
signal, while [,, measures the net response at the cell
body per unit concentration of neurotransmitter at the



synapses, including any effects of dendritic signal atten-
uation. The factors |s,| can be absorbed into the by,
without loss of generality, but the l,, must then appear
explicitly. (In general the |s,| also incorporate different
maximum firing rates for the various populations, which
removes the need to normalize the sigmoidal functions to
any value other than unity.) This then leads to steady-
state equations for this model of the same form as in
previous sections, but with b,,, replaced by l,,b,,, and

li

bin = l—ben, (37)

€
for all n. Hence, for a fixed ratio l;/l. (only the ratio is
an independent parameter), only three of the by, are in-
dependent in this model. This simplifies the study of its
parameter space in what follows. Note that there is no
analog of (36) for the by, once they have incorporated
the |s,|.

Previous works [1,7-9,12-14] have argued on physio-
logical grounds that a.. and a;. (equal in the random
connectivity model) are larger than the other ap,. Al-
though we do not impose such a restriction in the present
work, we consider maximal values of b.. = b;c which are
larger than those of the other b,,, in the specific numer-
ical examples discussed below.

C. Parameter Dependence of Root Structure of the
Random Connectivity Model

We can now apply the conditions discussed in Sec. I1
E to study the occurrence of various numbers of roots in
the random connectivity model with o given by (33). We
consider three regimes, depending on the size of the ratio

Ii/le.

1. Generall; /1.

A sufficient condition for exactly one root to occur 1s
that f(y) be monotonic increasing. This is certainly the
case if f_(y) is monotonic increasing, because o(V;) in
(17) is a monotonic increasing function of y (see Sec. TI
C). Using (A4), we thus find that zone 1A of parameter
space satisfies

bee <4/C, (38)

which is the condition for f_(y) to have no turning
points. All 3-root and 5-root zones must satisfy the re-
verse inequality.

A further necessary condition for three roots to exist
is that the maximum of f be positive and the minimum
of f_ be negative. Equations (17) and (A2) imply that
the turning points of fi (y) occur at

1+ (1 - cﬁ) 1/2] . (39)

1
y=3

If b.e > 4/C, one then has y &~ 1/Cbee, 1 — 1/Che,, with
the maximum of fi occurring at the first of these two
roots. Substitution of this approximate value of y into
(17) and (34) yields the following condition for fi to be
positive:

1
bee < Eexp[CVO— 14+ Cbej — Chesds]. (40)

For the minimum of f_(y) to be negative, a similar anal-
ysis to the above, but for y & 1 yields the requirement

bee > %[u +In(u+1In(u+...))], (41)
u=CVy— Chesps + 1. (42)

The upper bound (40) increases exponentially with Vg,
whereas the lower bound (41) only increases linearly.

For five roots to occur, f(y) must necessarily have a
positive slope somewhere between the turning points of
fe(y). The first two terms in the relevant expression,
(32), are negative in total between the turning points of
f-(y), while the last peaks where ¢’ peaks; i.e., where
Vi = Vo and ¢’/ = (/4 from the appendix. Replacing the
first term on the right of (32) by its minimum 4/C, and
the last term by its maximum value, a necessary condi-
tion for five or more roots to occur is found to be

(14 b3;C/4) (bee — 4/C) < Cheibie /4. (43)

On making the identification (37) for the random con-
nectivity model, one finds that this requirement cannot
be satisfied for b.. > 4/C for any choice of [;/l., so no
5T-root zone can exist.

2. li/le > 1

If I;/lc > 1 we can improve on the estimate (43).
Specifically, (14) and (37) imply that V; increases with
l;. Hence, for sufficiently large I;, V; exceeds Vy and
f(y) ~ fi(y) over most of the range in y, particularly
at large y where f has a minimum. Similar arguments
to those leading to (41) then imply that the 3-root zone
satisfies (41), but with

u = CVO + 1 + Cbei - Cbes¢s~ (44)

Figure 6 shows the 1-root and 3-root zones as func-
tions of b.s¢s and b.. for three values of b.;, Vo = 3, and
l;/lc = 4. The conditions (40) and (41) with (44), shown
for comparison, are seen to provide reasonable estimates
of the boundaries of the 3-root zone (although the upper
bound errs significantly on the high side for large be;),
while the boundary of zone 1A is consistent with (38).
The connectivities between the various subzones are seen
to accord with Fig. 5, although there are no zones of type
1D or 3C in this case. The case b.; = 0, shown in Fig. 6
(a), corresponds to a purely excitatory network of corti-
cal neurons. This case has been previously studied with
equivalent results [1].



3. li/le =1

A number of simplifications follow if we specialize to
the case [;/l. = 1. Most importantly, (13) — (15) imply
V. =V; = 071 (y). Hence, we find

f(y) = 0_1(3/) - (bee - bei)y — bes¢s~ (45)

This function has the same functional form as fi (y) and,
hence, can have only 0 or 2 turning points and 1 or 3
roots. In this special case there are turning points only
for bee — be; > 4/C' and then the 3-root zone satisfies
the necessary and sufficient conditions f(y) > 0 at the
left turning point of f and f(y) < 0 at the right turning
point. If be. — be; > 4/C these conditions become

1
bee — bey > E[u +In(u+In(u+...))], (46)
U = CVO +1-— Cbes¢s: (47)

1
bee — bes < Eexp[C’Vo — 1 — Cbesops]. (48)

Equation (48) and the restriction bee — be; > 4/C imme-
diately imply the condition

besps < (CVo—1—1n4)/C, (49)
on the 3-root zone and, hence,
Vo> (1+1n4)/C, (50)

for three roots to exist for positive b ;.

Figure 7 shows the 1-root and 3-root zones as func-
tions of besds and b, for two values of b.;, Vo = 3, and
l;/lc = 1. The conditions (46) and (48), shown for com-
parison, are seen to provide very good estimates of the
boundaries of the 3-root zone, while (49) is also satisfied.
As in Fig. 6, the connectivities between the various zones
are in accord with Fig. 5.

4. li/le <1

In this case V; <« Vi and inhibitory neurons thus have
little effect on the cortical dynamics. The resulting root
structure is very close to that of Fig. 6 (a), with only
very weak dependence on b;.

IV. GLOBAL CORTICAL DYNAMICS OF THE
RANDOM CONNECTIVITY MODEL

Many cortical phenomena occur on spatial scales com-
parable to the whole cortex and on time scales much
longer than those of dendritic integration in individual
neurons or even the faster cortical rhythms (a few tens
of ms). In particular, there are slow rhythms (so-called
delta and theta rhythms) and so-called slow waves, which

are prolonged deviations of cell potential without oscil-
latory components. These typically have time scales of
100 ms or longer [10], as do chemical feedback mech-
anisms that modulate the overall state of the cortex.
Similarly, the evoked response potentials that follow a
stimulus have time scales of several hundred ms and are
known to involve conditioning over even longer periods
[10]. Previous theoretical work has also shown that the
globally uniform (k = 0) mode is the least stable or most
unstable and, hence, that it is likely to play a significant
role in the dynamics [1].

In this section we use the results of the preceding analy-
sis as the groundwork to treat large scale cortical dynam-
ics on long time scales. In future, this treatment will form
the basis of understanding adiabatic control of the corti-
cal state via feedback or external stimuli. We specialize
to the case of spatially uniform (global) dynamics on time
scales much longer than those the dendritic integration
time of ~ 10 ms. In Sec. IV A we derive the relevant
equations of motion for the random connectivity model
with /; /l. = 1, which yields closed-form analytic results.
Section IV B treats linear dispersion and stability, repro-
ducing and generalizing previous results in the adiabatic
regime. Numerical results in Sec. TV C illustrate these
results by applying them to large scale dynamics and to
the cortical response to sinusoidal variations of ¢;.

A. Adiabatic Global Cortical Dynamics

The equations of global cortical dynamics (GCD) are
those of Sec. TI A, with the deletion of the Laplacian
term in (8). Tf we specialize to adiabatic dynamics with
time scales much longer than the dendritic integration
time constants a~! and #=1, (5) — (7) are replaced by
(11). For l; = I, one also has V; = V., @Q; = Q., and
Qai = Qae~

We introduce the notation

1 [d? d
Dei=— = +2v.i—+7% ). 1
) 75271' (dt2 + ’)/ ) dt + ’ye,z) (5 )

Noting that +; is extremely large for typical cortical pa-
rameters [1], we can make the local inhibition approxi-
mation, D; & 1 [1], which yields ¢; = Q; = Q. via (8).
Using (8) again we find

De¢e = Qe: (52)
=o(VL), (53)
= J(gQae), (54)
= U(bee¢e - beiQe + bes¢s): (55)

where (1), (9), (11), and the local inhibition approxi-
mation have been used in obtaining (53) and (54). We
have also written bpyp = ¢mamn in (55), as in previous
sections, but now reinterpret the b,,, in the generalized
way introduced in Sec. TTIT B (i.e., the by, incorporate
the stimulus strength |s,|).



Tf we rewrite (55) using y = Q. = o(V.), as in previous
sections, comparison with (52) yields

07 (Y) = beede — beiyy + besds, (56)

and, hence,
Deh(y) = beey, (57)
h(y) = o7 (y) + beiy — besds- (58)

Equation (57) is equivalent to the motion of a Newto-
nian particle under the influence of both frictional and
conservative forces, as can be seen by writing it in the
form

dh(y)
di?

- —2%%&1’) + 42 [beey — h(y)]- (59)

The first and second terms on the right of (59) repre-
sent frictional and conservative forces, respectively. The
fixed points of (59), representing the steady states of the
system, coincide with the roots of the function f(y) dis-
cussed in previous sections since f(y) = h(y) — beey. The
function f(y) is thus proportional to the conservative
part of the force, but has the opposite sign.

Tf friction dominates, accelerations are small and (59)
can be simplified to

@ ~ VS[beey - h(y)]

dt = o do;;(y)+bei '

(60)

Equation (60) has the same fixed points as (59) and its
denominator 1s positive definite.
Tt is possible to formulate (59) in terms of a potential

U(h) via

h
() =2 [ [ = by an (61)

0

where hq is an arbitrary reference point, which we place
at hg = 0, and 1’ is a dummy variable. The inverse y(h)
exists and is unique because dh/dy is positive definite.
Integration by parts yields

U(h) = 72—2 [h2 — 2be. (hy - /y y h(y’)dy’)] ;o (62)

where yo = yo(ho) and ¥ is a dummy variable. Tf we
substitute the explicit form (34) for ¢=1(y) into (58), we
find

2
U(h) = 77 [h2 - 2bee{hy + (besds = Vo) (y = wo)

bei

1
-5 - ) — GlwIny —yonyo

+u—wmu—w—u—mmu—m@}<%>

2

with

h(y) = Vo + %ln (ﬂ—y) . (64)

Tt is worth noting that U(h) in (63) is measured rela-
tive to a point hg that depends on the b,,,. Since the zero
of U is arbitrary, one can always re-express it relative to
a point that does not depend on the b,,, or V. Specif-
ically, if one chooses this point to be the unique point
where hg = 0 when all the b,,,, are zero and Vy = 0, one
must use yo = 1/2 in (63).

Figure 8 shows an example of U (h), plotted against y,
in zone 3A of Fig. 6 (a), near the boundary with zone
1B. Note the two minimums, corresponding to the sta-
ble fixed points, and one maximum at the unstable fixed
point. The divergences of U(h) as y — 0,1 prevent the
system from reaching these points. As the boundary of
zone 1B is approached and crossed, the right-hand mini-
mum potential rises to exceed the potential at the maxi-
mum, leaving only the left-hand minimum. Likewise, the
boundary of zone 1C corresponds to the central maxi-
mum falling below the left-hand minimum, leaving only
the right-hand minimum.

Formulation of GCD in terms of a potential empha-
sizes the physical requirement that fixed points of the
system must alternate between stable and unstable in
character [apart from degenerate cases of multiple coin-
cident roots of f(y)] — between any two minimums of
U(h) there must be a maximum. Moreover, the first and
last fixed points must be stable, or else the system would
have additional fixed points at infinite V, ;, which is a
contradiction. These conclusions are not restricted to
the random connectivity model with I; = I, but hold for
general forms of ¢ and arbitrary coefficients b,,, for the
same physical reasons.

B. Linear Dispersion and Stability

In the case of small perturbations from a fixed point
yr, (57) can be Fourier transformed to yield the linear
dispersion equation

2
. ~zb
(e — i)? = et

dy(yf) + bei

(65)

where the notation in (65) indicates that the derivative
of ¢7'(y) is to be evaluated at y;. This result repro-
duces Eq. (55) of Ref. 1 for zero wave number (k = 0),
l; = 1., and b.; = 0, although this earlier result was in a
somewhat different notation.

The stability boundary of a fixed point can be calcu-
lated from the point where both real and imaginary parts
of w are zero [1]. Hence, we find that instability occurs
for

do™" (yy)

bee
>

+ ber. (66)



This result generalizes Eq. (57) of Ref. 1 to nonzero b; for
l; = l. and k = 0. Tt confirms physical intuition in that
feedback from the inhibitory neurons to the excitatory
ones raises the instability threshold.

A well established result is that sufficiently strong in-
phase feedback of a subject’s EEG (by allowing it to mod-
ulate a light source in their field of vision for example)
will rapidly induce a seizure. This implies that the insta-
bility threshold (66) has been lowered. We can estimate
the threshold for such feedback-induced seizures by re-
placing ¢ in (58) by Ae™¥(y — y;), where A and ¢ are
real constants representing the amplitude and phase of
the feedback signal. After linearizing the resulting equa-
tion, we find a dispersion equation of the form (65) with
the replacement

bei = by — bes Ae'™. (67)
Instability occurs for

do~" (yy)

bee
>

+ bei + A: (68)

where the upper and lower signs in (68) correspond to
¥ = m and ¥ = 0, respectively. The threshold is low-
ered relative to (66) for in-phase feedback, and raised for
feedback that is m out of phase. As one might expect,
the effect of feedback that is 7 out of phase 1s equivalent
to increasing b.;, the coefficient that describes the effect
of inhibitory neurons on excitatory ones. Seizure induc-
tion, and the variation of its threshold with 1, provides a
potential experimental test of the theory presented here
and in previous works [1,13].

C. Nonlinear Dynamics and the Effects of Dendritic
Integration

Figure 9 compares solutions of the full GCD equations
including the effects of dendritic integration for realistic
physiological values & = 3 = 400 s~! in (5) - (7), with
the first- and second-order adiabatic approximations (60)
and (59). The parameters correspond to a point in zone
3A with two stable fixed points separated by one unsta-
ble one. Tn this case, (5) — (7), (9), and (10) are replaced
by

- bes¢s] )

(69)

d’ d 2 2
ﬁ—f-QO[%—FOZ ‘/571' =« [(bee_bei)¢e

for l; = I.. Figure 9 (a) shows a case where the system is
initialized in the basin of attraction of the highest fixed
point, which corresponds to a seizure state, but near the
middle (unstable) fixed point. The full GCD equations
and Eqgs (59) and (60) all imply that the system accel-
erates to larger y, before approaching the highest fixed
point asymptotically with ¢. The full solution, including

dendritic effects, has an initial steep transient, followed
by very similar behavior to the other solutions. The time
evolution is very similar apart from a few ms lag between
the curves. Figure 9 (b) shows results for the same sys-
tem as in Fig. 9 (a), except that it was initialized below
the lowest fixed point. In this case, the three solutions
are again similar after a ~ 10-ms transient in the full so-
lution, converging smoothly toward the fixed point. Nei-
ther (59) nor (60) shows clear superiority over the other
in this case.

The adiabatic approximation made in deriving (59)
and (60) depends on a(= ) being larger than the in-
verse timescale of the global dynamics. Figure 10 shows
the effect of varying a over the range 1000 s=! to 100
s~'. In each case the system is the same as in Fig. 9,
except that it is initialized slightly above the lowest fixed
point. For a > 200 s=1, (59) and (60) give reasonable
approximations to the dynamics in this and other exam-
ples investigated, in accord with physical expectations.
Again, neither approximation can be strongly preferred
on the grounds of accuracy.

Figure 11 shows a further comparison of the full GCD
equations with the approximations (59) and (60). TIn
these results, a 10% sinusoidal modulation of ¢, was su-
perposed on a mean value of unity. The figure shows that
(59) and (60) give good approximations to the actual be-
havior for frequencies below about 10 Hz, consistent with
the results in Figs 9 and 10. At higher frequencies, the
first-order result (60) greatly underestimates the ampli-
tude of the oscillations relative to the full result, indicat-
ing that high frequencies are more strongly damped in
the corresponding adiabatic dispersion equation than in
the full one. The second-order result (59) gives a good
approximation to the dynamics for frequencies < 30 Hz,
with an upper bound to its regime of validity of 10 — 20
Hz for o = 100 s~'. This upper bound is not a signifi-
cant limitation, since the adiabatic approximation is not
intended to be valid at frequencies above about 10 Hz in
any case and only applies for a > 100 ™!,

V. SUMMARY

In this work we have investigated the steady states and
global dynamics of our recent continuum model of elec-
trical activity in the cerebral cortex, generalized to allow
for different effective gains at synapses between different
populations of neurons. Particular attention has been
paid to the steady states of the system and to adiabatic
global dynamics.

General criteria for the occurrence of various numbers
of cortical steady states have been found. In the case
of our previously used sigmoidal function (33), a maxi-
mum of three roots can occur for the random connectivity
model (other models can have at least five, although we
have not yet found any cases with more than five). The
regions of parameter space in which various numbers of



roots occur have been studied for this model and their
boundaries have been found to be consistent with the
analytic criteria obtained here.

For a particular case of our model, in which the char-
acteristic response strengths of excitatory and inhibitory
neurons are equal (I; = l.), (59) and (60) have been ob-
tained as approximations to the full global cortical dy-
namics (GCD) equations (1), (5) — (10), and (33) with
V2 replaced by zero in (8). Equation (59), a second-
order equation, is equivalent to the equation of motion
of a Newtonian particle in a potential in the presence
of friction. Equation (60) applies in the case that fric-
tion dominates the dynamics. We have obtained explicit
forms for the potential and force functions, allowing us to
characterize the basins of attraction of the steady states.

The approximate linear dispersion relation (65) gener-
alizes the results of previous work [1] to include inhibitory
effects more fully in the adiabatic limit for £ = 0. Sta-
bility boundaries are also generalized to include the ef-
fects of inhibition and direct feedback of cortical signals
as input. The results confirm that inhibition raises the
instability threshold, while feedback can either raise or
lower it depending on its phase relative to the signal.

Numerical results have confirmed that the adiabatic
GCD equations approximate the full ones adequately
for dendritic integration times in the physiologically ob-
served range, provided the characteristic time scales of
the dynamics are longer than about 100 ms. The re-
sponse to sinusoidal modulations of the system is also
found to agree well for frequencies below about 10 Hz.

The results obtained here provide the basis from which
to address the effects of feedback on large-scale cortical
dynamics. Steady states are the most fundamental fea-
tures of the dynamical system. Their basins of attrac-
tion can evolve as a result of the feedback mechanisms
that are known physiologically to operate on the cortex,
thereby allowing for more complicated dynamics, pos-
sibly including limit cycles or chaotic evolution (which
may, of course, also occur on faster timescales as a re-
sult of voltage-dependent changes in ionic conductivities
of neuronal membranes, for example). Many features of
EEGs are large-scale and occur in the adiabatic tempo-
ral regime. These include evoked response potentials, the
alpha, delta, and theta rhythms [10], the characteristic
“spike and wave” signal of petit mal seizures [10], and
the progression of grand mal seizures [10]. The present
work thus promises to have wide application in inter-
preting phenomena such as these and in determining the
relevance of our model to such situations. FEven when
feedbacks and dynamics are not adiabatic, they occur
against the background of the instantaneous fixed points
and their basins of attraction which still constrain the
dynamics.
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APPENDIX: VERIFICATION THAT THE
REQUISITE CRITERIA ARE SATISFIED BY
THE SPECIFIC FORM (33) OF o

In this appendix we verify that the form of & used
in our previous work has all the properties required in
Sec. II.

The sigmoidal function we have used in previous work,
and its inverse are given by (33) and (34). We find the
following results by repeated differentiation of these ex-
pressions:

do(Vi) _
= Co(l — o), (A1)
d*e(Vi) _ o
e C%0(1 —o)(1 = 20), (A2)
dBU(Vi) 3 2
v =C%¢(1 —0)(1 — 60 + 607), (A3)
do=1(y) 1 1 1
7o) .
d*o~(y) 1 1 1
dy> O ((1 —y)? y2) ’ (45)
Po~y) 2 1 1
dy* O ((1 —y)? y3) " (A9)

The above expressions satisfy our requirements (2) —
(4) in Sec. TT A. Tt is straightforward to show that the
expression in (A1) is nonnegative and has a single peak,
about which it is symmetric. All the derivatives shown
are well defined and continuous in the relevant ranges.
The maximum of (A1) is of order unity for C' of order
unity and 0 < o < 1.

We now turn to the additional criteria in Sec. IT C. We
find that (A4) is indeed symmetric about y = 1/2 and
that (26) — (28) are satisfied.
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TABLE 1. Classes of root structure of f(y). The first col-
umn gives the category name, the numeral denoting the total
number of roots (the minimum number in the 57 zone). The
remaining three columns list the numbers of roots in zones 1,
I1, and 11T of Fig. 3, respectively. Class 1A has no turning
points of fi(y), so is categorized separately since the zones I
— IIT are meaningless in this case.

Category I IT 1
1B 1 0 0
1C 0 0 1
1D 0 1 0
3A 1 1 1
3B 0 2 1
3C 1 2 0
5t 1 3 1

TABLE I1. Fractional synaptic densities Fy,, and the cor-
responding coefficients amy, from (9) and (10), calculated from
the random connectivity model. Excitatory neurons have a
fractions fa and fp of cortical axonal and dendritic synapses,
respectively, while extracortical connections occupy a fraction
€ of the total cortical dendritic synapses.

mn Fon Amn

ee (1=e)fafp (1—¢€)fa

ei (}—e)(1—fA)fD (1—=e)(1— fa)
ie (1—e)fa(l = fp) (1—e)fa

i (1—=e)(1=fa)(1 = fp) (L=e)(1 = fa)
is e(1— fp) €
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FIG. 1. Example of the function o(V;) and its derivatives
with respect to V;, as calculated from (33) and (A1) — (A3).
(a) o(Vi), (b) first derivative, (c) second derivative, (d) third

derivative.

FIG. 2. Example of the function 07" (y) and its derivatives
with respect to y, as calculated from (34) and (A4) — (AG).
(a) o7 (y), (b) first derivative, (c) second derivative, (d) third
derivative.

FIG. 3. Example of behavior of the functions fi(y) (up-
per dashed curve) and f_(y) (lower dashed curve), defined in
Sec. IT E. The behavior of f(y) in a case with three roots is
shown by the solid curve. The regions I, I1, and I1T discussed
in Sec. IIT A are labelled, and their boundaries are indicated
by colons.

FIG. 4. Tlustration of the seven root structures of f(y)
listed in Table I, plus the structure corresponding to class 1A.
Each case also shows f1(y) as dashed curves and is computed
using (33) and (34) with b.; = 2.5, and b;; = b;. = 0. Not all
cases correspond to the random connectivity model of Sec. 111
B. (a) 1A, with bee = bie = 2 and b.. = 0. (b) 1B, with
bee = bie = 5 and b.. = 0. (c) 1C, with b.c = bje = 5 and
bes = 6. (d) 1D, with b.e = be = 4 and b, = 1.8. (e) 3A,
with be. = bje = 10 and b.. = 0. (f) 3B, with b.e = b;c = 6.2
and b.. = 1.3. (g) 3C, with b.. = b;e =5 and b.. = 1.2. (h)
5%, with bee = bie = 8 and b, = 0.9.

FIG. 5. Allowed connectivities between zones of parame-
ter space corresponding to the eight classes of root structure.
Zones can bound one another in parameter space at a set
of nonzero measure only if they are linked by a line in this
diagram.

FIG. 6. Root structure as a function of parameter space for
the random connectivity model with Vo = 3, C ~ 1.81, and
l;/lc = 4. The zones from Table T are shown as functions of
besops and b.. for various b.;. In order of increasing darkness
the zones are 1A, 1B, 1C, 3A, and 3B. Small irregularities in
the boundaries between zones are artifacts of the numerical
calculations. The analytic bounds of the three-root zone, (40)
and (41) with (44), are shown for comparison as solid curves.

(a) be; =0, (b) bei =5, (c) be; = 10.

FIG. 7. Root structure as a function of parameter space for
the random connectivity model with Vo = 3, C ~ 1.81, and
l;/lc = 1. The zones from Table T are shown as functions of
besops and b.. for various b.;. In order of increasing darkness
the zones are 1A, 1B, 1C, 1D, 3A, and 3B. Small irregularities
in the boundaries between zones are artifacts of the numeri-
cal calculations. The analytic bounds of the three-root zone,
(46) and (48), are shown for comparison as solid curves. (a)

bei = 5, (b) be; = 10.



FIG. 8. Potential U(h) vs. y, given by (67) for the random
connectivity model with b.. = 5, be; = 0, and besps = 0.3,
near the boundary between zones 3A and 1B in Fig. 6 (a).

FIG. 9. Comparison of the dynamics for the full and adia-
batic GCD equations for a random connectivity model system
with bee = 30, be; = 3, and besps = 0.3. The solid line shows
the full result for « = 8 = 400 s~', while the dotted and
dashed lines show results from the first-order approximation
(60) and the second-order approximation (59), respectively.
(a) System initialized with y = 0.05. (b) System initialized
with y = 0.005.

FIG. 10. Effect of a(= ) on the agreement between the
full and adiabatic GCD equations for the same system as in
Fig. 9, but initialized with y = 0.025. The solid line shows the
full result, while the dotted and dashed lines show results from
the first-order approximation (60) and the second-order ap-
proximation (59), respectively. (a) & = 1000 s™*. (b) & = 400
s7l () a=200s"". (d) @ =100 s™".

FIG. 11. Comparison of the full and adiabatic frequency
responses of the same system as in Figs 9 and 10, where a
10% sinusoidal modulation has been added to ¢.. The solid
line shows the full result, while the dotted and dashed lines
show results from the first-order approximation (60) and the
second-order approximation (59), respectively. (a) Modula-
tion at 3 Hz. (b) Modulation at 10 Hz. (c) Modulation at 30
Hz. (d) Modulation at 50 Hz.
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