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Abstract. Zero-lag synchronisation arises between points on the cerebral cortex receiving
concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms.
Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show
patterns of zero-lag synchronisation (associated with empirically realistic spectral content)
can arise from both linear and nonlinear mechanisms.

For low levels of activation, we show the synchronous field is described by the eigen-
modes of the resultant damped wave activity. The first and second spatial eigenmodes (which
capture most of the signal variance) arise from the even and odd components of the inde-
pendent input signals. The pattern of zero-lag synchronisation can be accounted for by the
relative dominance of the first mode over the second, in the near-field of the inputs. The
simulated cortical surface can act as a few millisecond response coincidence detector for
concurrent, but uncorrelated, inputs.

As cortical activation levels are increased, local damped oscillations in the gamma
band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant fre-
quency. This is associated with “locking” between active sites and spatially segregated phase
patterns.

The damped wave synchronisation and the locked nonlinear oscillations may com-
bine to permit fast representation of multiple patterns of activity within the same field of
neurons.

1. Introduction and background

Synchronisation has been suggested as a solution to the binding and segregation
problems of psychology [4,5,13–15,23–25,29,31,40,62]. Object features might
be bound by synchronous neuronal firing and coded for by spatially separated cells
or cell assemblies in the cortex [59]. The phase differences between sets of these
distributed synchronous firing cells might code multiple objects in the system [61].
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Empirical verification of gamma band stimulus–induced synchronisation in the
brain has been found in single unit and multiunit local field potential (LFP) and
electroencephalogram (EEG) recordings [4,13,15,23–25].

There is no universally accepted mechanism to account for all the experimen-
tal evidence for synchronous activity in the brain. Doubts have also been raised
as to whether such synchronisation is relevant to binding or segregation [43].
Such doubts include uncertainties about the time–window for synchronisation, the
degree to which synchronisation can shift time differences between neural events
and, particularly, the time it takes to establish synchronisation in ongoing activity
[8]. This paper attempts to account for synchronous behaviour in simple physical
terms.

Distinction is made between zero–lag synchrony and synchronous oscillation.
Zero–lag synchrony (synchrony for short) is defined as high positive linear
cross–correlation/covariance at zero phase–lag between separate sites in cortex.
Synchrony is generally associated with damped sinusoidal or nonsinusoidal cross–
correlation and auto–correlation functions [13,15,16,23] but constant and slight or
even negative damping profiles have been found [16,34].

Synchronous oscillation, on the other hand, is synchronisation associated with
gamma band EEG oscillations and found predominantly at 40 Hz. It has often been
assumed that all synchronisation in the brain is a highly nonlinear phenomenon
[1] since neuron firing is nonlinear at crucial stages of signal transmission [27].
Hence, large arrays of nonlinear neuron–like oscillators have been used to model
cortical tissue and the observed nonlinear phase–locking in such models has been
seen as the inevitable mechanism for global synchronisation in the cortex [6,7,10–
12,14,18,32,35,36,52,56–58] There is, however, conflicting evidence [61] such
as observations of broad band synchronisation [4] and synchronous activity seen in
continuum models of electrocortical behaviour which do not depend on essential
nonlinearity [48,67,68].

The models of electrocortical activity used in this paper subsume individual
properties into a collective mass action. This continuum framework produces waves
almost akin to linear superposition waves which are associated with synchrony [48,
67] as well as synchronous oscillation. A full discussion of these models and ex-
perimental findings can be found in a recent review [66]. The term continuum as it
is used here specifically refers to the act of lumping together the activity of a group
of neurons and treating them as an entity rather than referring to mathematical
continuity. The numerical model utilised here is discrete rather than continuous.
Properties and formulation of a partial differential version of the present discrete,
and integral, model have been explored elsewhere [46,48].

In this paper we use cross–correlation methods to demonstrate synchrony in
a simplified averaging model and cross–correlation and PCA methods to show
synchrony, synchronous oscillation and nonlinear phase–locking within a real-
istic physiological model. We show the synchrony mechanism is a form of
coincidence detection, or selective filtering of input signals, with very rapid
onset and this essentially linear mechanism gives way to non–linear phase–locked
synchronous oscillation, within the 40 Hz band in the realistic physiological
model.
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2. Analysis tools

The cross–correlation coefficient ρ between two LFP time series, is:

ρ(i, j) = c(i, j)√
c(i, i)c(j, j)

(1)

where c(i, j) is the covariance between the ith and j th time series. If, as here, all
elements are measured in the same units then covariance alone can be used in the
PCA. The method involves calculation of the eigenvectors ei and eigenvalues λi of
the covariance C matrix of the m state–variable system. The system matrix, Z for
n time steps is:

Z =



z(1, 1) z(1, 2) . . . z(1,m)
z(2, 1) z(2, 2) . . . z(2,m)

...
...

z(n, 1) z(n, 2) . . . z(n,m)


 (2)

where z(i, j) is the system value with temporal mean removed at spatial position
j at time i. The covariance:

C = 1

(n− 1)
ZT Z (3)

satisfies the eigenvalue equation:

Cei = λiei (4)

with the temporal principal component vector for each eigenvector given by:

aj = Zej (5)

3. Models

Two simulation models are used; a simplified dendritic averaging model and a
physiological model [65]. We begin with the simple model.

3.1. Simplified averaging model

The averaging model consists of positive–feedback linked linear elements and was
used to specify minimum requirements for synchronisation. Connectivity strength
between elements was weighted by a Gaussian function of distance. For a distance
rpq between elements p and q the weighting was:

ωpq ∝ e−
1
2 (

rpq
σ
)2 (6)

A given element’s input was composed of the Vout of other elements weighted
by this connection strength, with σ the standard deviation. The time δtpq it took
voltage signals Vout (t) to travel this distance was dependent on rpq and axonal
transmission speed ν so:

δtpq = rpq

ν
(7)
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The voltage at the pth element at time t0 was then:

V
(p)
in (t0) =

m∑
q=1

ωpqV
(q)
out (t0 − δtpq) (8)

A particular lumped element’s voltage can be modelled as a summation of ear-
lier voltage values due to the delays and fall-off characteristics associated with
dendritic potentials. For N time steps (with length of time step �t) this dendritic
potential summation is:

V
(p)
out (t0) =

∑N
i=1 V

(p)
in (t0 − i�t)

2N
(9)

3.2. Physiological model

The model used here (reported in detail elsewhere [68]) is an intermediate stage in
a family of models [44–48,66,67] which progress from the simplest possible de-
scriptions of the cortex as a delay network. By introducing more complex aspects
of cerebral dynamics and independently specified parameter values in a step-wise
fashion we aim for an increasingly accurate account of cerebral dynamics [66]. The
level of development used here is sufficient to reproduce the essential features of
synchronous oscillation [65]. The spectral properties observed (notably the capac-
ity for oscillation in the gamma and 40 Hz range) are dependent on rapid feedback
processes operating at synaptic level. Justifications for the use of normalised units,
and for the particular parameter values here applied, are given in the earlier papers
[30,33,42,51,53,68]. These values, and the match to experimental data have been
improved in subsequent stages of development of the family of models, but no
essential change in the class of dynamics here described is brought about by the
later modifications.

3.3. State-equations

This model represents the continuum of cortical tissue as discrete cortical zones in
the spirit of Wilson and Cowan [63,64]. Transfer of afferent synaptic impulses to
efferent pulses via dendritic processes is modelled by a biexponential lag function
matched to physiological measurements [45,53,54].

The N cells in unit volume each have a probability of emission of an action
potential qi as a function of their membrane potentials. The sum of population
membrane potentials is directly proportional to the LFP, V (t) at time t . Then in a
mean-field approximation the pulse-probability density Q(t) is given by:

Q = 1

N

N∑
i=1

qi(V ) (10)

By the central limit theorem, for large N , Q will have a Gaussian distribution
with respect to V , independent of individual distributions of qi , so V and Q are
approximately related by:

Q = (1 + ea(V−3))−1 (11)
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Where a = −π/√3, LFP voltage units (vu) are approximate to standard deviations
of the distribution of cell pulse probability over the complete range of LFP, with
a 50% mean probability of pulse emission 3 standard deviations from complete
polarisation of the neural population.

The time response of mean membrane potential (and by implication LFP and
soma potential) is given by

V (t) = g

n∑
j=1

wjQa(t − j$t) j = 1, 2, 3...n (12)

where g is synaptic gain,Qa is afferent pulse action density,$t is the discrete time-
step, and n$t is large compared to the peak time response of membrane potential.
In accord with [46]

wj = b2j$te−bj$t (13)

models the rise and fall of membrane potential in response to input at t = 0; incor-
porating lags due to both synaptic conduction and average dendritic cable delay in a
single function. Parameter b regulates both the peak time and mean delay associated
with this lag. Time step $t was set at 0.1 ms, after trials showed progressive de-
crements of time-step to 0.01 ms produced only small, asymptotically diminishing
effects on spectral content of the results.

Within unit volumes both excitatory and inhibitory cell groups are distinguished,
each reciprocally and self-coupled, and each coupled at longer range to other unit
volumes by cortico-cortical fibres. Delays due to axonal conduction between unit
volumes are given by $τ = rpq/ν, where $τ is axonal conduction lag over the
distance rpq between the pth unit volume and the qth unit volume and axonal
conduction velocity is ν.

Coupling strengths are proportional to:

– The fractional density of synaptic couplings afferent to dendrites of excitatory
and inhibitory cells respectively (αee, βei, µei,Mee etc., as listed in Table 2).

– The synaptic gains of excitatory and inhibitory synapses, ge and gi
– Changes in synaptic efficacy, E

/
, representing feedback effects including those

of reversal potentials [30]. These feedback relations are modelled as linear re-
gressions of efficacy with membrane potential

E
/

ee(t) = (1 − Ve(p)(t −$t)/VeR)

E
/
ei(t) = (1 − Vi(p)(t −$t)/VeR)

E
/
ie(t) = (1 − Ve(p)(t −$t)/ViR)

E′
ii (t) = (1 − Vi(p)(t −$t)/ViR)

(14)

Subscripts e and i indicate excitatory and inhibitory potentials; subscript R a
constant-valued reversal potential. Smoothed efficacies {E/} were applied so
E(t) = ∑n

j=1 ujE
/(t − j$t) where uj = ce−cj$t . For large c, decay is rapid;

analogous to reversal potentials alone.
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State equations for the pth unit volume of the cortical system are then:

Qe(p) = (1 + ea(Ve(p)−3))−1

Qi(p) = (1 + ea(Vi(p)−3))−1

Ve(p) = ∑n
j=1 wjQae(p)(t − j$t)

Vi(p) = ∑n
j=1 wjQai(p)(t − j$t)

(15)

Qae(p),Qai(p) are pth unit volume afferent synaptic action densities for excitatory
and inhibitory cells which receive local synaptic input (at negligible axonal delay)
and delayed cortico-cortical inputs from qth unit volumes at range rpq , q = 1...u.
in accord with:

Qae(p) = geβeeEee(p)Qe(p) − giβieEie(p)Qi(p)

+ geMeeEee(p)Qs(p) + geµeeEee(p)Qns(p)

+ge
u∑
1
αee(rpq)Eee(p)Qe(q)(t − rpq/ν)

Qai(p) = geβeiEei(p)Qe(p) − giβiiEii(p)Qi(p)

+ geMeiEei(p)Qs(p) + geµeiEei(p)Qns(p)

+ge
∑u

1 αei(rpq)Eei(p)Qe(q)(t − rpq/ν)

(16)

αee(rpq) and αei(rpq) are partial input synaptic densities.
∑u

1 αee(rpq) = αee and∑u
1 αei(rpq) = αei . Qs and Qns are system inputs; Qs represents all time-varying

components in specific cortical afferents and Qns , acting as a control parameter, is
a uniform DC input modelling nonspecific cortical activation. See [44] for analysis
on the physics of this class of models.

3.4. Configuration of simulation

In both the simplified averaging and physiological models studied here an extended
area of cortex was simulated by unit volumes in a 20 x 20 or 20 x 40 matrix, each
volume connected with its neighbors so the coupling strengths, αee(x, y) declined
with rpq as a Gaussian function with standard deviation of 4 distance units. A
distance unit was the side of one cell of the given matrix and m = 400 or 800
in equation (2). This approximates the distribution of cortico-cortical fibres in cat
brain if the distance unit is taken as about 0.9 mm. Boundary conditions were to-
roidal in all simulations. Absorbing boundary conditions and matrix size changes
did not qualitatively affect the reported results.

3.5. Parameter values

Model parameters are given in Tables 1 and 2.

4. Methods and results

Methods and results are presented together, since the latter methods are contingent
on the earlier results.

A time step of �t = 0.1 milliseconds allowed a 10000 Hz maximum sampling
frequency; far more than needed to capture model frequencies – mainly below 100
Hz. Non-decimated data was retained for analysis to facilitate study of temporal
precision in the full model.
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Table 1. State-variables and standard parameters other than synaptic densities. LFP = local
field potential, PPD = pulse probability density.

Ve Excitatory LFP vu
Vi Inhibitory LFP vu
Qe Excitatory PPD Dimensionless
Qi Inhibitory PPD Dimensionless
a Slope parameter −π/√3 (vu−1)
b Dendritic time-constant 50 s−1

ge Excitatory gain 65 vu
gi Inhibitory gain 260 vu
c Decay time-constant. 1000 s−1

ν Axonal velocity 9 m s−1√
−
r

2

pq SD of axonal range 4 mm

VeR EPSP reversal 12 vu
ViR IPSP reversal −0.02 vu
Qns Nonspecific input Dimensionless
Qs Specific input Dimensionless

4.1. Simplified averaging model

Each lattice element started with a pulse density of zero. Two linearly uncorrelated
driving noise inputs with 0.0 mean [37,41] and standard deviation 10.0 were given
to the lattice at row 11 in columns 8 and 14. The two noise signals are referred to
as an asynchronous noise source.

The system was allowed to attain stationary temporal evolution about a steady
state mean. Then multichannel data sets of length 20000 were generated for a range
of summations in equation (9). Using a reference channel located at column 11 on

Table 2. Synaptic couplings subscripts ee, ei, etc., indicate synapses between cell types,
excitatory to excitatory, excitatory to inhibitory, etc. Types of coupling are: α (cortico-cor-
tical connections), β (intracortical connections), µ (nonspecific cortical afferents) and M
(specific afferents). Synaptic density fraction is the proportion of synapses of each type in
unit cortical volume. (The exact values used in the simulations are given for completeness
although the precision given is greater than is justified from the anatomical data.) Afferent
fraction is the proportion of synapses on the excitatory or inhibitory cell dendrites respec-
tively.

Synaptic Synaptic Afferent
coupling density fraction fraction

αee 0.765 0.8693
βee 0.0845 0.0960
βei 0.0149 0.1242
αei 0.100 0.8333
βie 0.0228 0.0259
βii 0.004 0.0333
µee 0.0077 0.0088
µei 0.0011 0.0092
Mee,i Not given
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the 13th row of the lattice, calculations of maximum cross–correlation for 100
timesteps into the future and past were made for each channel in the lattice. The
delay at which the maximums occurred was also noted. The process was repeated
for a selection of noise seeds and a typical case is plotted in Figure 1.

As summation length increased a pattern of maximum cross–correlation in ele-
ments around the driving sites developed. Results are calculated from the analogue
of LFP but, equivalently, could be obtained using pulse–density as the observed
state variable. A comparison of all cases showed the synchronous field was most
highly developed for N = 100, where a maximum correlation close to 1.0 was

Fig. 1. Cross–correlation results for 20 x 20 version of Simplified Averaging model with
two driving sites (see text) input asynchronous Gaussian noise. (a) Grey scale spatial plots
of maximum cross–correlation, of the site marked ‘x’, with every other site for lags of
±100 timesteps, (b) Delay associated with the cross–correlation maximum at each site bar
indicating ±2 milliseconds.
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seen for time delays less than 5 timesteps or 0.5 milliseconds. For a 2000 Hz or
less sampling system this would appear as zero–lag cross–correlation in agreement
with Eckhorn and others [13].

The findings of zero–lag synchrony in the simplified averaging model, show
nonlinear phase–locked oscillations are not needed for production of positive cross–
correlations; only a system of coupled linear elements with delay summation on
previous state values and connectivity with delay according to distance is necessary.
In opposition to the conjectures of some authors [17,18,58] inhibitory elements are
not required.

4.2. The physiological model

An examination of the physiological model was carried out to study the impact
of local feedback dynamics upon synchronisation. In all cases correlations were
obtained from LFP, and pulse–density results are equivalent.

In the standard two–input case of the complete model, nonspecific input Qns

DC of 20.0 was input to all elements of the lattice while the driving sites on row
eleven of the lattice in columns 8 and 14 each received Qs Gaussian white noise
signals of zero mean and standard deviation 0.005 to excitatory and inhibitory cell
dendritic junctions. Multichannel time series of length 20000 points were acquired
after an initialisation, and cross–correlation analysis carried out as before.

As for the Simplifed Averaging case a pattern of maximum cross–correlation
(in the range 0.7–1.0) for delays of less than 5 timesteps (0.5 milliseconds) exists
as a field surrounding the driving sites. See Figure 2.

4.2.1. Spatial dependencies of eigenvectors
PCA was employed to study global cooperative modes in both SimplifiedAveraging
and Physiological models with the results in the synchrony ranges being illustrative
of the same phenomena. Therefore only the physiological model PCA is presented
here.

Driving sites were removed prior to analysis to facilitate viewing of the spatial
field patterns. A 20000 length PCA was chosen from a study of the asymptotic
properties of the eigenvalues and is discussed elsewhere [8]. Ensemble averages
were taken to obtain standard errors on the variance associated with each mode.
For a selection of noise seeds, the ensemble average of results over 25 runs are in
Figure 3.

Two dominant modes, containing over 99% of the variance of the original mul-
tichannel signal, were found. The first mode was similar to the pattern of zero–lag
cross–correlation in Figure 1; the second mode consisted of two lobes with opposite
sign loadings. The first eigenvector had associated variance about four times the
second’s. Third and higher modes had significantly smaller eigenvalues and will
not be examined.

4.2.2. Odd and even components of input signal
To discover what caused the dominant modes, two input paradigms were investi-
gated. Firstly, two identical noise signals were fed to the driving sites – the
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Fig. 2. Cross–correlation results.Physiological model 20 x 20 lattice with toroidal bound-
ary conditions. Two specifically driven input sites (see text) received Gaussian mean zero
white noise. Non–specific cortical activation (Qns) set at 20.0.(a) Grey scale spatial plots
of maximum cross–correlation, of the site marked ‘x’, with every other site for lags of
±100 timesteps, (b) Delay associated with the cross–correlation maximum at each site bar
indicating ±2 milliseconds.

synchronous noise case. Secondly, the same noise signals were input to both sites
with the input to one channel multiplied by minus one – the anti–synchronous noise
case. This amounted to inputting the even components of the two–dimensional noise
signal for the former and the odd components of the same signal for the latter.

With purely synchronous or antisynchronous inputs, the ensemble eigenvectors
(eigenmodes) are explained by odd and even components in the twin driving inputs.
See Figure 3. In the synchronous noise case the first eigenmode occupies 99% of
the variance and has the spatial form of the first mode in the asynchronous case. In
the antisynchronous case the first eigenmode occupies 99% of the variance and has
the spatial form of the second mode in the asynchronous case. The asynchronous
case can then be explained by dominance of a synchronous eigenmode over an
antisynchronous so the system acts as a coincidence detector; enhancing the tran-
siently correlated inputs in the two noise signals, while reducing the effect of the
negatively correlated ones. This process is made possible by dendritic summation
in the elements.

The temporal characteristics of the synchronous field were examined using the
the principal mode time evolutions. Ensemble averaged spectra of these evolutions
in Figure 4, indicate movement to the right through the different designated EEG
frequency bands as cortical activation (Qns) was increased. A similar shift in power



Spatial eigenmodes and synchronous oscillation 67

Fig. 3. First two ensemble averaged eigenvectors for 25 different noise seeds for PCA done
over an interval of 20000 timesteps (2 seconds) on the 20 x 20 lattice simulation of Physio-
logical model. Input and other conditions as for Figure 2. The numbers beneath the images
indicate the percentage of variance associated with each eigenvector and the standard error
on the basis of 25 runs.

spectra towards the gamma band has been found in animal experiments on the effect
of increased reticular activation upon synchronous oscillations [39].

4.2.3. Effect of separation of sites on synchrony
Since coupling connectivity was a function of distance the effect of different sepa-
ration of driving sites on synchrony was examined.

The physiological model was simulated on a 20 x 40 lattice to allow separa-
tion to an order of 19 intervening sites. Two sites situated symmetrically about the
midline, and separated by 3 cells in row 11 of the lattice, were submitted to asyn-
chronous Gaussian mean zero standard deviation 0.005 noise. The driven sites were
then progressively moved apart and the multichannel output analysed with PCA.

Spatial eigenmodes for different driving site separations are in Figure 5. As sep-
aration increased the synchronous field broke down as first and second eigenmodes
became two separate synchronous fields, one around each of the driving sites.

Additional coupling was employed to see if the fall–off of synchrony with dis-
tance was due to decreasing connection strength or the size of axonal time delays.
The additional couplings were imposed between elements which were equal hor-
izontal distances from the midline, and also declined in coupling strength with
Gaussian distance. Standard axonal time delays were retained.

The dominant synchronous mode in this case retained the same concurrent fields
of synchrony around both driving sites, and the first and second eigenmodes still
partitioned responses to even and odd parts of the input signals. The first mode occu-
pied a greater percentage of the variance than in the system with standard Gaussian
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Fig. 4. Power spectra of first two temporal principal component vectors associated with the
eigenmodes in Figure 3. Ordered from top to bottom, Qns = 0, Qns = 20, Qns = 40 and
Qns = 50. Ensemble avergages over 10 runs. Simulation timestep is 0.1 ms.

coupling; evidence for the role of relative connection strength in synchrony. See
Figure 6.

4.2.4. Time of onset of synchrony in physiological model

If synchrony is in fact an important mediator of perceptual binding, then physiolog-
ically and in any plausible candidate model, the field of synchrony must be capable
of flexible adaptation on a time–scale of milliseconds. Since perceptual coding is on
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Fig. 5. First two eigenvectors and associated variances for PCA done over a 10000 timestep
(1 second) interval of a 20 x 40 lattice simulation of the Physiological model. Two specifi-
cally driven input sites were located at separations of 5,11 and 19 intervening elements with
Qns = 20.0 and Qs = 0.005 standard deviation Gaussian mean zero white noise. Standard
Gaussian coupling between sites was employed.

the order of a few milliseconds [2,26,29,31,38,49,55,61] the temporal evolution
of the system eigenmodes was studied.

A two–dimensional asynchronous noise signal was input as before, with Qns ,
of 20.0 to all elements. A repetition of the simulation was carried out for a matching
signal, except for an aberrant 100 step (10 millisecond) noise signal at 15000 steps
(1.5 seconds). The aberrant period had the same first order properties of mean and
autocorrelation but was phase–randomised using the method of surrogate data [50].

After removal of a 5000 timestep initialisation, PCA was applied over 20000
timesteps and the principal component temporal vectors calculated for both ‘normal’
and ‘aberrant’ input cases using equation (5). The temporal evolution
associated with the first eigenvector was studied since it contained the dominant
spatial synchronous effect (similar results were found for higher order modes). The
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Fig. 6. First and second eigenmodes and associated variances for PCA done over a 10000
timestep (1 second) interval of a 20 x 40 lattice simulation of the Physiological model. Two
specifically driven input sites were located at separations of 5 and 19 intervening elements
with Qns = 20.0 and Qs = 0.005 standard deviation Gaussian mean zero white noise as in
Figure 5. Here both Standard Gaussian coupling and extra Long–range Gaussian coupling
between sites was employed.

magnitude of the difference between the normal and aberrant times series was cal-
culated. This procedure was repeated twenty–five times for a selection of pairs of
noise signals. An ensemble average of the magnitude of the difference between the
two series was then found. See Figure 7.

The aberrant noise input was taken to have been registered by the spatial field of
the lattice when the magnitude of the difference between the two time series became
large. Large, in this context, meant the change in magnitude of the difference at a
given time point was larger than the maximum deviation from the mean observed
at any time point in the 10000 magnitude of the difference time series before the
aberrant noise onset.

A separation in the two temporal evolutions occurred at about 25–30 timesteps.
See Figure 7. The synchronous field of the entire system will therefore respond
to a different stimulus within a few milliseconds. Much smaller sections of the
lattice respond even faster because of their closer connection proximity to the
source.
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Fig. 7. Time taken to separate the two principal component temporal trajectories calculated
for the system under two noise cases described in the text. Plot of magnitude of difference
of two standardised series as a function of time ‘- -’. Vertical axes is in standardised units.
The point at which the noise input to the two lattices became different is indicated in the
diagram as a solid vertical line. The dotted ‘.’ vertical line indicates 40 timesteps after the
change in noise input. Where the dashed ‘- -’ curve crosses the solid horizontal line indicates
when the deviation became “large” as defined in text.

4.2.5. Nonlinear phase-locking results

If the level of non–specific input (Qns) was increased sufficiently to the two driving
sites then each element in the system attained limit cycle oscillations. In particular,
a state was obtained in which the elements of the lattice started to oscillate at a
frequency close to 40 Hz.

As a first step, the phase relationships between the individual oscillating ele-
ments in the lattice were examined. The driving sites were completely phase–locked
and locking was also found between other elements at a lag to the driving sites. A
graph of the phase difference between the left–most driving site and every other
element in the lattice is in Figure 8. Segments of the lattice were found to be phase–
locked as expected for a time-delay nonlinear oscillator network. The operation
of the wave mechanism described earlier allows phase–locking of outer array ele-
ments at a large phase lag to the driving sites. A similar phenomena of segregated
phases has been found in a global system of nonlinear oscillators [60].

These oscillations were linked in zero–lag phase with other elements to form
clusters of zero–lag phase and required local inhibition for their occurrence – in
agreement with abstract nonlinear models of synchronous oscillation proposed by
others [17,18,58].
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milliseconds milliseconds
2.9 0

Fig. 8. Phase relationships between the left hand driving site and every other element of the
lattice at a stage in which limit cycle oscillations are present. Qns = 50.

As Qns was increased the temporal evolution of individual lattice elements
underwent transitions from damped or stable focus states through limit cycles to
unstable foci. See Figure 9 for a selection of such transitions for one of the elements.

Complex periodic behaviour associated with a synchronous spatial field, sim-
ilar to in the simple periodic case, was observed for lower level input driving and
high values of Qns .

A qualitative check was made on how sensitive the limit cycle synchronous
modes were to the input of noise. It was found the system remained stable even for
relatively large noise inputs (standard deviation of 0.1) when Qns was 40 and Qs

was 0.6. The noise perturbed the system in and out of exact phase–locking but did
not lead to completely uncontrolled excitation. The time course of two elements is
in Figure 10.

The results are reminiscent of stable limit cycles with stochastic or nonlinear
bursting seen in some physiological conditions [19,20] and thought to be associated
with specific perceptual events. The very limited use of complex neurotransmitter
regulation in the present model precludes close comparison.
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Fig. 9. Typical element temporal delay plots for voltage output x(i) vs lagged voltage output
x(i+lag) from driving site 208 for various Qns values. Driving sites 208 and 214 received
Qs = 0.8. The top row shows stable focus behaviour and the bottom row a periodic orbit.

5. Discussion and conclusions

The results obtained in these simulations indicate synchronisation, between sepa-
rated sites in the brain, may arise via fairly distinct mechanisms dependent on the
level of cortical activation.

Firstly, synchrony is an inevitable property of delay elements similar to den-
drites joined by long–range couplings with relatively rapid transmission and can
be explained by simple linear models operating on uncorrelated inputs such as the
Simplified Averaging model employed here. There is no need to assume special
co–incidence detection properties of dendritic membranes or complicated local dy-
namics to explain the way synchrony can lead to the elimination of asynchronous
components in the activity of two concurrently firing sites in cortex. Instead, this
property emerges directly from an eigenfunction decomposition of the travelling
waves which radiate from the active sites. As a corollary, because of the almost lin-
ear superposition properties of travelling waves in this media, the basic principles
of decomposition of eigenmodes illustrated above still hold for experiments with
multiple uncorrelated inputs as reported in a following paper [9]. Synchrony can
be associated with rhythmic broad–band electrocortical activity, including that in
the gamma band. It is also seen as damped autocorrelation and cross–correlation
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Fig. 10. Transitions from limit cycle to stochastic bursting with input of noise. Qns input of
40 and a Qs DC of 0.6 with zero mean standard deviation 0.1 Gaussian white noise sent to
driving sites 208 and 214 in a 20 x 20 lattice. Plots on the left–hand side are with respect
to driving site 208 over different length time scales. Plots on the right–hand side are with
respect to site 10 on the first row of the lattice, over different length time scales.

functions. The onset of synchrony via this mechanism can co–ordinate events in
an extended neuronal field very rapidly, and is therefore well suited to the role
of mediation of binding in cognitive and perceptual processes. This synchrony is
quite distinct from oscillation – the oscillation arising locally and requiring local
excitatory/inhibitory interactions – while synchrony requires only excitatory pro-
cesses. Synchrony can arise over both long and short ranges, but the form of the
synchronous field is sensitive to the specific coupling within the field. Specific cor-
ticocortical connections might provide a histological counterpart to the additional
long–range connections employed in these situations [3,21,22]. Such connections
have been associated in the visual cortex with similar receptive fields and orienta-
tion preference properties in spatially separated sites [28] that give rise to synchrony
at distances up to 7 mm [23].

Secondly, at sufficiently high levels of activation of the physiological model, a
nonlinear mechanism with phase–locking emerges. This mechanism is potentially
capable of mediating much more complicated dynamic interactions between cor-
tical sites. Oscillation and both excitatory and inhibitory synaptic transmission are
essential to the mediation of this type of synchronisation. This may be equated
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with the role in image segmentation ascribed to synchronous mechanisms in some
models [10]. Notably, this synchronous mechanism could be partially distinguished
from the former type by the cross–correlation and autocorrelation functions which
it gives rise to. These functions would be virtually undamped for at least a tran-
sient period, and bandwidth limited (the 40 Hz band in this model), rather than
broad–band.

Of the two mechanisms, the former linear synchrony would be much more
readily observable physiologically, wherever large fields of cells interact regard-
less of scale. This may explain why broad–band synchrony is observed widely over
many cortical areas [4]. The nonlinear mechanism would be seen only episodically
and strictly locally, and may arise only in circumstances in which new informa-
tion is emerging from autonomous local activity in the brain, rather than with the
binding of simple sensory and perceptual information. These distinctions, although
plain enough in simulation, are unlikely to be readily apparent physiologically.
For instance, small changes in model parameters (which quantify more complex
processes likely to be slowly time–varying in physiological reality) might shift
the frequency of the nonlinear oscillation somewhat. Also, a distinction between
noise–perturbed limit cycles and lightly damped linear oscillations in the gamma
range cannot readily be made either on auto/cross–correlation profiles or with any
other time series method – particularly since these separate dynamic processes may
both occur transiently in the same recordings. First steps toward empirically dis-
tinguishing the two types of synchronisation using rotated PCA are reported in a
following paper [9].
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3. Braitenberg, V., Schüz̆, A.: Anatomy of the Cortex: Statistics and Geometry. Berlin and
New York: Springer–Verlag, 1991

4. Bressler, S.L., Coppola, R., Nakamura, R.: Episodic Multiregional Cortical Coherence
at Multiple Frequencies During Visual Task Performance. Nature, 366, 153–156 (1993)

5. Brosch, M., Bauer, R., Eckhorn, R.: Stimulus–Dependent Modulations of Correlated
High–Frequency Oscillationsin Cat Visual Cortex. Cerebral Cortex, 7, 70–76 (1997)

6. Brown, G., Wang, D.: Modelling the Perceptual Segregation of DoubleVowels with a
Network of Neural Oscillators. The University of Sheffield, Department of Computer
Science, 1996

7. Campbell, S., Wang, D.: Synchronization and Desynchronization in a Network of Lo-
cally Coupled Wilson-Cowan Oscillators. IEEE Transactions on Neural Networks, 7,
541–554 (1996)

8. Chapman, C.L.: Investigation of Synchronisation in a Mathematical Model of Cortical
Functionusing Principal Component Analysis. University of Sydney Australia, 1998

9. Chapman, C.L., Wright, J.J., Bourke, P.D.: Eigenvector Rotation Applied to Princi-
pal Components of Synchronisation in Simulated Cortex: Distinguishing Input Sources
from Fields. In preparation, 2001



76 C.L. Chapman et al.

10. Chen, K., Wang, D.L.: A Dynamically Coupled Neural Oscillator Network for Image
Segmentation. Department of Computer and Information Science and center for Cog-
nitive Science, The Ohio State University, Columbus, OH 43210, USA, July 1998

11. Choi, M.Y.: Periodic Synchronization in Networks of Neuronal Oscillators. Seoul Na-
tional University Theoretical Physics Preprints 95–015, (1995)

12. Destexhe, A., Babloyantz, A.: Pacemaker–Induced Coherence in Cortical Networks.
Neural Computation, 3, 145–154 (1991)

13. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munkand, M., Reitboeck,
H.J.: Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex.
Biological Cybernetics, 60, 121–130 (1988)

14. Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: A Neural Network for Feature Link-
ing via Synchronous Activity: Results from Cat Visual Cortex and from Simulations. In
R.M.J. Cotterill, editor, Models of Brain Function, pages 255–272. Cambridge: Cam-
bridge University Press, 1989

15. Engel, A.K., König, P., Kreiter, A.K., Singer, W.: Interhemispheric Synchronization of
Oscillatory Neuronal Responses in Cat Visual Cortex. Science, 252, 1177–1179 (1991)

16. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M., Singer, W.: Binding and Response
Selection in the Temporal Domain — a New Paradigm for Neurobiological Research.
Theory of Biosciences, 116, 241–266 (1997)

17. Ermentrout, B.: Complex Dynamics in Winner–Take–All Neural Nets with Slow Inhi-
bition. Neural Networks, 5, 415–431 (1992)

18. Ernst, U., Pawelzik, K., Geisel, T.: Synchronization Induced by Temporal Delays in
Pulse–Coupled Oscillators. Physical Review Letters, 74, 1570–1573 (1995)

19. Freeman, W.J., van Dijk, B.W.: Spatial Patterns of Visual Cortical Fast EEG During
Conditioned Reflex in a Rhesus Monkey, Brain Research, 422, 267–276 (1987)

20. Freeman, W.J.: Mass Action in the Nervous System New York: Academic Press, 1975
21. Gilbert, C.D., Wiesel, T.N.: Clustered Intrinsic Connections in cat visual cortex. Journal

of Neuroscience, 3, 1116–1133 (1983)
22. Gilbert, C.D., Wiesel, T.N.: Columnar Specificity of Intrinsic Horizontal and Corti-

cocortical Connections in Cat Visual Cortex. Journal of Neuroscience, 9, 2432–2442
(1989)

23. Gray, C., König, P., Engel, A., Singer, W.: Oscillatory Responses in Cat Visual Cortex
Exhibit Inter–Columnar Synchronization which Reflects Global Stimulus Properties.
Nature, 338, 334–337 (1989)

24. Gray, C., Singer, W.: Stimulus–Specific Neuronal Oscillations in Orientation Columns
of Cat Visual Cortex. Synchronization in Neural Networks, 86, 1698–1702 (1989)

25. Gray, C.M., Viana Di Prisco, G. Stimulus–Dependent Neuronal Oscillations and Local
Synchronization in Striate Cortex of the Alert Cat. The Journal of Neuroscience, 17,
3239–3253 (1997)

26. Hirsh, I.J.: Auditory Perception of Temporal Order: The Journal of the Acoustical So-
ciety of America, 31, 759–767 (1959)

27. Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and its
Application to Conduction and Excitation in Nerve. Journal of Physiology, 117, 500–544
(1952)

28. Hubel, D.H., Wiesel, T.N.: Functional Architecture of Macaque Monkey Visual Cortex.
Proceedings Royal Society of London B, 198, 1–59 (1977)

29. Joliot, M., Ribary, U., Llinás, R.: Human Oscillatory Brain Activity near 40 Hz Coex-
istswith Cognitive Temporal Binding. Proceedings National Academy of Science USA,
91, 11478–11751 (1994)

30. Kandel, E.R., Schwartz, J.H.: Principles of Neural Science Second Edition. New York,
Amsterdam, London: Elsevier, 1995



Spatial eigenmodes and synchronous oscillation 77

31. König, P., Engel, A.K., Roelfsema, P.R., Singer, W.: How Precise is Neuronal Synchro-
nization? Neural Computation, 7, 469–485 (1995)

32. König, P., Schillen, T.B.: Stimulus–Dependent Assembly Formation of Oscillatory Re-
sponses: I. Synchronization. Neural Computation, 3, 155–166 (1991)

33. Liley, D.T.J., Wright, J.: Intracortical Connectivity ofPyramidal and Stellate Cells: Es-
timates of Synaptic Densities and Coupling Symmetry. Network, 5, 175–189 (1994)

34. Livingstone, M.: Oscillatory Firing and Interneuronal Correlations in Squirrel Monkey
Striate Cortex. Journal of Neurophysiology, 75, 2467–2485 (1996)

35. Lumer, E.D., Edelman, G.M., Tononi, G.: Neural Dynamics in a model of the tha-
lamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms.
Cerebral Cortex, 7, 207–227 (1997)

36. Lumer, E.D., Edelman, G.M., Tononi, G.: Neural Dynamics in a Model of the Tha-
lamocortical System. I. The Role of Neural Synchrony Tested Through Perturbations of
Spike Timing. Cerebral Cortex, 7, 228–236 (1997)

37. Marsaglia, G., Zaman, A.: Towards a Universal Number Generator. Technical Report
FSU–SCRI–87–50, Florida State University, 1987

38. Miller, G.A., Taylor, W.G.: The Perception of Repeated Bursts of Noise. The Journal of
the Acoustical Society of America, 2, 171–182 (1948)

39. Munk, M.H.J., Roelfsema, P.R., König, P., Engeland,A.K., Singer, W.: Role of Reticular
Activation in the Modulation of Intracortical Synchronization. Science, 272, 271–274
(1996)

40. Neuenschwander, S., Singer, W.: Long–range Synchronisation of Oscillatory Light Re-
sponses in the Cat Retina and Lateral Geniculate Nucleus. Nature, 379, 728–733 (1996)

41. Noell, K.-L., Weber, H.: Algorithm 712 Collected Algorithms from ACM. Transactions
on Mathematical Software, 18, 434–435 (1992)

42. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. New York, Oxford:
Oxford University Press, 1995

43. Palm, G., Wennekers, T.: Synchronicity andits Use in the Brain. Behavioral and Brain
Sciences, 20, 695–696 (1997)

44. Rennie, C.J., Robinson, P.A., Wright, J.J.: Effects of Local Feedback on Dispersion of
Electrical Waves in the Cerebral Cortex. Physical Review E, (In press), 1998

45. Rennie, C.J., Wright, J.J., Robinson, P.A.: Mechanisms of Cortical Electrical Activation
and Emergence of Gamma Rhythm. J. Theo. Biol., (In press), 2000

46. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and Stability of Waves of Elec-
trical Activity in the Cerebral Cortex. Physical Review E, 56, 826–840 (1997)

47. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Pre-
diction of Electroencephalographic spectra from Neurophysiology. Physical Review E,
(submitted), 2000

48. Robinson, P.A., Wright, J.J., Rennie, C.J.: Synchronous Oscillations in the Cerebral
Cortex. Physical Review E, 57, 4578–4588 (1998)

49. Rolls, E.T., Tovee, M.J.: Processing Speed in the Cerebral Cortex and the Neurophysi-
ology of Visual Masking. Proceedings Royal Society of London B, 257, 9–15 (1994)

50. Schiff, S., Sauer, T., Chang, T.: Discriminating Deterministic Stochastic Dynamics
in Neuronal Activity. Integrative Physiological and Behavioral Science, 29, 246–261
(1994)

51. Segev, I.: Dendritic Processing. The Handbook of Brain Theory and Neural Networks,
pages 282–289. Cambridge, Mass., London, England: MIT Press, 1995

52. Sompolinsky, H., Golomb, D., Kleinfeld, D.: Global Processing of Visual Stimuli in
a Neural Network of Coupled Oscillators. Proceedings National Academy of Science
USA, 87, 7200–7204 (1990)



78 C.L. Chapman et al.

53. Thomson,A.M.:Activity–Dependent Properties of Synaptic Transmission at Two Class-
es of Connections made by Rat Neocortical Pyramidal Axons in vitro. Journal of Phys-
iology, 502, 131–147 (1997)

54. Thomson, A.M., West, D.C., Hahn, J., Deuchars, J.: Single Axon IPSPs Elicited in Py-
ramidal Cells by Three Classes of Interneuronesin Slices of Rat Neocortex. Journal of
Physiology, 496, 81–102 (1996)

55. Thorpe, S., Fize, D., Marlot, C.: Speed of Processing in the Human Visual System.
Nature, 381, 520–522 (1996)

56. Traub, R.D., Jeffreys, J.G.R., Whittingtonand, M.A., Jefferys, J.G.R.: Simulation of
Gamma Rhythms in Networks of Interneurons and Pyramidal Cells. J. Computat. Neu-
rosci., 4, 141–150 (1997)

57. Traub, R.D., Whittington, M.A., Stanford, I.M., Jefferys, J.G.R.: A mechanism for gen-
eration of loing-range synchronous fast oscillations in the cortex. Nature, 383, 621–624
(1996)

58. van Vreeswijk, C., Abbott, L.F., Ermentrout, G.B.: When Inhibition not Excitation Syn-
chronizes Neural Firing. Journal of Computational Neuroscience, 1, 313–321 (1994)

59. von der Malsburg, C., Schneider, W.: A Neural Cocktail–Party Processor. Biological
Cybernetics, 54, 29–40 (1986)

60. Wang, D.: Object Selection Based on Oscillatory Correlation. Department of Computer
and Information Science and Center for Cognitive Science, The Ohio State University,
Columbus, Ohio 43210, USA, 12, 1996

61. Wennekers, T., Palm, G.: On the Relation Between Neural Modelling and Experimental
Neuroscience. Theory of Biosciences, 116, 267–283 (1997)

62. Whittington, M.A., Traub, R.D., Jefferys, J.G.R.: Synchronized Oscillations in Inter-
neuron Networks Driven by Metabotropic Glutamate Receptor Activation. Nature, 373,
612–615 (1995)

63. Wilson, H.R., Cowan, J.D.: Excitatory and Inhibitory Interactions in Localized Popula-
tions of Model Neurons. Biophysical Journal, 12, 2–24 (1972)

64. Wilson, H.R., Cowan, J.D.: A Mathematical Theory of the Functional Dynamics of
Cortical and Thalamic nervous Tissue. Kybernetik, 13, 55–80 (1973)

65. Wright, J.J., Bourke, P.D., Chapman, C.L.: Synchronous Oscillation in the Cerebral
Cortex and Object Coherence: Simulation of Basic Electrophysiological Findings. Bi-
ological Cybernetics, 83, 341–353 (2000)

66. Wright, J.J., Robinson, P.A., Rennie, C.J., Gordon, E., Bourke, P.D., Chapman, C.L.,
Hawthorn, N., Lees, G.J., Alexander, D.: Toward an Integrated Continuum Model of
Cerebral Dynamics: The Cerebral Rhythms Synchronous Oscillation and Cortical Sta-
bility. Biosystems, 63, 71–88 (2001)

67. Wright, J.J.: EEG Simulation:Variation of Spectral Envelope Pulse Synchrony and ≈ 40
Hz Oscillation. Biological Cybernetics, 76, 181–194 (1997)

68. Wright, J.J.: Simulation of EEG: Dynamic Changes in Synaptic Efficacy Cerebral
Rhythms and Dissipative and Generative Activity in Cortex. Biological Cybernetics,
81, 131–147 (1999)


