
Creating a toolkit for volume rendering
with a variety of visual styles

Paul Bourke
WASP

University of Western Australia

Motivation

Visualisation by peers: literal, interactive, stereoscopic.

Publications: limited colour, perhaps greyscale, single
still image.

Posters: high quality.

Public spaces: audience doesn’t necessarily have the
visual language, needs to be engaging.

Artisic expressions: less need to “honour” the data,
evocative representations.

Raw data export: for incorporation into other
environments, pass on to animators.

Requirements

Create a collection of consistent tools that operate on
the same dataset to create a wide range of rendering
styles. Remove the need for multiple data
representations, different conventions, etc.

Available as source code ... needs to be integrated with
other software by the author.

Allows perspective projection rather than just
orthographic ... required for stereoscopic projection.

Relatively self contained. Many of the traditional
solutions (VolPack, VolVis, VTK, MPIRE, SPIRE,
VOLUME, ...) carry a lot of extra baggage some of
which is getting hard to install and for which cross
platform implementation can be problematic.

Curvature shading

Exploratory dataset

Mummy, unopened but with some drill holes.
(Courtesy MONA)

CAT scanned at 512x512x512 (Hobart Hospital)

16 bit voxels => 266MB.

DICOM files, header plus one file per 512 slices.

Raw CAT scan data, no data smoothing or filtering
applied.

Note: incorrect slice separation used in renders shown
here, slice thickness was not available at the time.

Point clouds

Points drawn between voxels that span an isolevel.

Lame?

Excellent for initial data exploration.

Multiple isolevels at once, quickly and interactively
scan the volumetric space.

Working on point cloud occlusion.

Isosurfaces: Standard fare

Marching cubes, tetrahedrons and similar.

Not a particularly efficient mesh representation.
Various mesh simplification algorithms exist, surface
relaxation, etc. Using my own algorithms and ideas
implemented in polyr (Arup Nielsen)

Choose vertex normal from volume gradient or mesh
connectivity, a variety of algorithms available.

Usually easy to export to commercial animation
packages, 3DStudioMax, Lightwave, Maya, etc.

Problem: choosing a single isolevel.

Throwing so much information away!

Multiple isosurfaces

Partially solves the choice of isosurface problem.

Each isosurface can be semi-transparent and different
colours giving many more colour combinations than the
number of isosurfaces.

Potentially large models but mesh reduction and
relaxation improves that. Generally interactive, mesh
representation has shared vertices and normals.

Can also be rendered for shadows and other effects,
as well as exported to traditional modelling/animation/
rendering packages.

Still investigating derivation of triangle stripes for
further OpenGl drawing efficiency, doesn’t seem trivial.

Ray Casting

Simplistic algorithm:
calculate entry point of camera ray with volume
while ray is in volume
 estimate value at current ray position
 calculate/accumulate colour and opacity
 advance ray

Diffuse/specular surface shading and shadows possible.

Rich set of transfer functions. Including 2D functions
of voxel value and gradient.

Lots of optimisation potential
- early ray termination
- empty space skipping
- hierarchical octree volumes
-

Shader implementation

Fragment shader samples a 3D texture volume along
rays from the camera.

spvolren: “A Simple and Flexible Volume Rendering
Framework for Graphics-Hardware–based Raycasting”
by Simon Stegmaier, Magnus Strengert, Thomas Klein.

Interactive performance, but depends on many factors,
eg: ray advance step size.

Standards and how future proof?

Current development: adding stereoscopic support and
additional shaders to create further rendering styles.

Brute force texture mapping

Developed by myself in 2000.

Back to front blending of textured planes.

Interactive (given enough texture memory).

Improve memory requirements by not precomputing
texture for all three view orientations. Consequence is
a delay when switching between view orientations.

Uses 16 bit opacity and colour mapping functions.

Various tricks possible to improve performance: sub-
sectioning and sub-sampling during navigation.

Emissive media

The density of the voxels determines the brightness
and colour of the light emitted.

Based upon a simple fluorescence model, no shadowing.

Continuous colour/brightness mappings.

No occlusion/absorption so greatly improved result
when viewed stereoscopically.

Currently experimenting with full more physically
realistic media properties: emissivity, absorption,
scattering.

Angry Mummy

Summary

Somewhat surprised by how few freely available tools
are available that are not “old”. Lots of papers but
very few groups releasing source code.

Impressed with the interactive performance possible
on high end, but still consumer, graphics cards.

Happy with the visual variety achieved so far.

Keen to develop further non-photorealistic and
diagrammatic/sketch styles. For example: Michael
Burns et al, “Line Drawings from Volume Data”

Questions / comments

- Credit for CAT scan data of mummy: Museum of Old and New Art, Hobart, Tasmania.

- polyr: “Polygon generation program” by Arup Nielsen.

- spvolren: “A Simple and Flexible Volume Rendering Framework for Graphics-
Hardware–based Raycasting” by Simon Stegmaier, Magnus Strengert, Thomas Klein.

- Contour-Based Surface Reconstruction using Implicit Curve Fitting, and Distance
Field Filtering and Interpolation by Jeffrey Marker et al.

- Marching cubes: author.
- Textured planes: glvol by author.
- Surface relaxation and simplification: author.
- Media rendering: POVRay with media modifications by author.
- Mesh viewing/rendering: GeomView (Geometry Centre), stereo2 by author.

