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Abstract 

…………………………………………………………………………………………………………. 

A new model is contrasted with standard models of V1 organization. The new model proposes that 

synchronous oscillation and metabolic competition organize the configuration of the superficial patch 

system, and includes an earlier concept – that neurons form local connections within macrocolumns in 

a closed meshwork analogous to a Möbius strip. The new model accounts for the organization of 

response maps and patchy connections, including their tendency toward hexagonal rotational 

periodicity and the absence of patchy connections about orientation preference singularities, and 

explains interspecies variation in their orderliness.   

Simulations of signal transmission provide a critical test of the new model. The simulations reproduce 

experimentally observed effects upon V1 neuron responses to visual lines, as a function of the line’s 

orientation, direction of movement, speed, and length. Neither selective feature-specific response of 

neurons (as in standard models, which are unable to explain the same data) nor selective neuron 

responses to particular spatial and temporal frequencies of inputs are assumed.  

Further anatomical and physiological tests for the new model are proposed, and the implications for 

information flow in the cortex are briefly considered. 

…………………………………………………………………………………………………………… 

  

Key words  · spatio-temporal energy · superficial patch system · synaptic metabolic competition · 

synchronous oscillation · visual organization    

 

Introduction 
………………………………………………………………………………………………….. 

 

In this paper we derive a model for self-organization of the cortical superficial patch system and link 

this to earlier work (Wright et al 2006; Wright & Bourke 2008) in which we proposed that synaptic 

connections within a macrocolumn form a closed, recurrent, network analogous to the surface of a 

Möbius strip. The combined model contrasts with standard models of cortical organization and is able 

to explain otherwise unresolved issues in contemporary visual and cortical physiology.  

Unresolved issues. 

Since the discovery that individual cells in the primary visual cortex (V1) respond with an Orientation 

Page 2 of 46Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Preference (OP) to visual lines of differing orientation (Hubel and Wiesel 1959), attempts to analyze 

the response organization and explain its relationship to cortical function (von der Malsberg 1973; 

Willshaw and von der Malsberg 1976; Swindale 1996) have played a pivotal role in neuroscience. 

The surface organization of OP in V1 has recently been compared with appropriate random 

surrogates, and shown, in some species, to approximate an hexagonal rotational periodicity, in which 

each roughly delineated macrocolumnar unit exhibits all values of OP arrayed around a pinwheel 

(Paik and Ringarch 2011; Muir et al 2011). Varying chirality and orientation of the pinwheels 

achieves continuity of OP at the columnar margins, thus producing linear zones and saddles. In any 

individual irregular variation from the average periodicity is seen, and some species exhibit little or no 

sign of this ordering. Because of this marked interspecies variation, serious doubt has been expressed 

that the pattern is of functional significance at all, since response maps are absent in some species 

without those species having any apparent deficit in vision (Horton and Adams 2005).   

 

A further puzzle of V1 organization is posed by the superficial patch system. This system, composed 

of relatively long-range, largely excitatory (McGuire et al 1991, Hirsch and Gilbert 1991) patchy 

connections (Gilbert and Wiesel 1979; Rockland and Lund 1983) is ubiquitous in cortex (Muir and 

Douglas 2011) and has a functional relationship to OP. Patchy connections develop before sensory 

afferents reach the cortex (Price 1986; Callaway and Katz 1990; Durack and Katz 1996; Ruthazer and 

Stryker 1996) and do not arise or terminate in the vicinity of OP singularities. Instead, near 

singularities, connections are apparently diffuse and local (Sharma et al 1995; Yousef et al 

2001;Mariño et al 2005; Muir and Douglas 2011; Buzás et al 2006). Yet patchy connections link areas 

of common OP (“like-to-like”) over distances several times the diameter of a macrocolumn 

(Mitchison and Crick 1982; Gilbert and Wiesel 1989; Buzás et al 2006; Muir et al 2011), are periodic 

on roughly the same interval as OP, and are largely patch-reciprocal (Rockland and Lund 1983; 

Angelucci et al 2002). It has been shown that formation of patchy connections must depend on the 

supply of information from the field by presently unknown means, rather than being explicable from 

considerations of neural growth per se (Muir and Douglas 2011). Muir and Douglas’s analysis 

emphasizes the absence of patchy connections in the vicinity of singularities as a crucial aspect 

requiring explanation in future models. 

Initial belief that response to simple oriented lines in the visual field formed the basis of OP maps has 

been undermined in two ways. Firstly, maps of OP appear in the cortex prior to visual experience 

(Wiesel and Hubel 1974; Blakemore and Van Sluyters 1975; Sherk and Stryker 1976)  - although it is 

argued that structured stimuli may arise from retinal inputs in the absence of visual experience (Albert 

et al 2008; Ringarch 2007; Paik and Ringach 2011). Secondly, and more recently, Basole and 
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colleagues, who tested OP using stimulus lines moving at different speeds, and oriented at differing 

angles to the line of movement of the stimulus, found OP to be a function of these variables to such a 

degree that for lines oriented non-orthogonally to the direction of movement, OP could vary 

progressively with increments of speed to an asymptotic limit of 90 degrees (Basole et al 2003, 2006). 

They also found that this effect was attenuated for lines of progressively greater length.  They, and 

subsequent workers, were able to explain their results by considering the temporal and spatial 

frequencies associated with the moving stimuli (Baker and Issa 2005; Mante and Carandini 2005; 

Basole et al 2006) and concluded that the primal stimulus characteristics are not isolated features such 

as orientation, direction and speed, but a reflection of the “spatio-temporal energy” (that is, the spatial 

and temporal Fourier components) of the moving visual stimulus’ projection to V1. Their results 

correspond to earlier single unit results in which tuning of V1 neurons to spatial and temporal 

frequency (DeAngelis et al 1993) was demonstrated. In this interpretation classical OP is the low 

stimulus-velocity limit of frequency selectivity of neuronal response. But it is not known how the 

spatial and temporal characteristics of a moving stimulus become transformed into determinates of 

individual cell firing. The findings also raise the possibility that the choice of stimulus type 

determines the kind of feature-detection that V1 neurons will exhibit. 

 

In further respects OP properties have proved more complicated than simple initial expectation. 

Estimates of OP near singularities show the measure, in response to drifting gratings, to be highly 

adaptively interactive with prior, contextual, stimuli– yet in linear zones, the measure is stable (Dragoi 

et al 2001). Also, the activation of neurons with a particular OP generates travelling electrocortical 

waves surrounding the site of stimulation (Benucci et al 2007) and these waves do not appear to be 

limited to propagation along “like to like” couplings.  

 

Standard models and their problems 

 

Explanation of organization of OP has been attempted in a group of now-classical theories, which we 

will refer to as “standard models”, following the comparative description of models introduced by 

Swindale (Swindale 1996). Dimension reduction methods (Kohonen 1982; Dubin and Willshaw 1987; 

Durbin and Mitchison 1990) show that the response maps of OP, eye preference (OC), direction 

preference (DP) and spatial-frequency preference (SF) are consequences of requiring continuity and 

completeness of representation of the full range of each response property, in a two-dimensional 

representation in which every type of response property occurs within any small area on the surface of 

V1 (Swindale 1996; Carriera-Perpiñán et al 2005). The same ordering is also explained as a 

consequence of competitive Hebbian learning among small neighborhood assemblies of excitatory 
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neurons, driven by spatially filtered cortical noise (Grossberg and Olson 1994). Separate spatial filters 

each distinguish a prescribed type of response, and total synaptic gain is conserved during the 

training, so that at each point in the field 

fk (xk ) = K
k=1

n

∑           (1) 

where xk  is a measure of a response property, fk (xk )  is an increasing function of xk , and K  is the 

maximum local synaptic weight. Of the types of response, the response to oriented lines is the 

cardinal feature, and the other categories follow from filtering on the input pathway (OC, DP) or as a 

secondary corollary of OP organization (SF).  

All standard models depend on seeding with oriented lines, in one way or another  (von der Malsberg 

1973; Durbin and Mitchison 1990; Obermayer et al 1990, 1992; Tanaka 1990; Swindale 1982,1992; 

Miyashita and Tanaka 1992 ; Grossberg and Olson 1994) and related models avoiding this limitation 

do not accurately reproduce response maps (Linsker 1986a,b,c; Miller 1994). More recent models 

dependent on retinal input (Albert et al 2008; Ringarch 2007; Paik and Ringach 2011) still ascribe 

response to oriented lines a primary role in the emergent functional architecture.  

 

Inhibition at greater range in the cortex than the range of excitatory connections is also necessary to 

produce Hebbian maps of OP in standard models. The findings of Basole and colleagues (Basole et al 

2003) pose a particular challenge to the standard models, since the inhibitory surround’s role is to 

suppress the connections responding to stimulus lines which are orthogonally oriented, and facilitate 

excitatory connections along the line of OP. Furthermore, anatomical evidence for long-range 

inhibitory connections is lacking (Swindale 1996) and aligned excitatory connections within 

macrocolumns are not apparent. More complex patterns of interconnection, in the form of interwoven 

meshes, have been recently demonstrated (Perin et al 2011) and are considered later in this paper. 

 

Synchronous oscillation, synaptic self-organization, metabolic competition and maximization of 

network information storage 

 

In our earlier work (Wright et al 2006; Wright & Bourke 2008) we hypothesized that synchronous 

oscillation may provide a mechanism for the coordination of synaptic consolidation and thus form OP 

maps, although we disregarded patchy connections. The extended model to be presented here relies on 

the same hypothesis. 
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Synchronous oscillation of pulses and local field potentials is a ubiquitous aspect of cortical activity 

(Eckhorn et al 1988, 1990; Bressler et al 1993; Gray et al 1989; Singer 1999; Cohen and Kohn 2011) 

and has been proposed as a solution to the “binding problem” of perceptual grouping and cognitive 

processing (Eckhorn 1990; Carpenter et al 1991; Singer 1999). Synchrony is a broad-band 

phenomenon in the temporal frequency domain, and oscillation in the gamma range produced by local 

excitatory-inhibitory cyclic firing is a principle cortical source of oscillation (Freeman 1991; 

Hausenstaub et al 2005) so that “synchronous oscillation” is often most apparent in the gamma band.  

Three neural mechanisms have been advanced to explain synchrony. Firstly, driving of neurons by 

synchronous signals from the thalamus (Steriade 2000), which is applicable to the initiation of feature 

binding (eg Singer 1999). Secondly, local inter-inhibitory oscillation (Schillen and Konig 1994; Traub 

et al 1996; Whittington et al 2000), a theory developed to explain oscillations in the hippocampus but 

possibly a more widely contributory mechanism to the local generation of oscillation. Thirdly, 

rejection of out-of-phase pulses during dendritic summation (Robinson et al 1998; Wright et al 2000, 

2009, 2010; Chapman et al 2002).  The third mechanism is of most importance in the present context, 

as it describes an average property of activated cortex, and thus may provide the broad organization of 

the cortical field required to co-ordinate synaptic development. This type of synchrony and 

synchronous oscillation appears in simulations that also accurately reproduce spectra, cross-

correlations and excitatory/inhibitory timings characteristic of activated cortex (Wright 2009). It is a 

consequence of wave interactions, and is at a maximum when equilibrium in the exchange of signals 

between all excitatory and inhibitory neurons is approached (Wright 2010).  It is convenient to 

distinguish the contributions of short-range and longer-range axonal connections, and their associated 

synaptic weights and pulse coincidence rates, to the synchronous field. Then, at any position q, the 

magnitude of zero-lag oscillation of dendritic potentials is given as J q , and the total synchronous 

field at equilibrium is  

 

J q

q

∑ = ( αR

q

R

∑ CR

q + βr

qCr

q

r

∑ )
q

∑ →max        (2) 

where r  andR  are vector positions distant from q, measured along short-range and longer-range 

connections respectively,αR

q ,βr

q  are synaptic gains of synapses linking q and r,R , and CR

q  and Cr

q  

are aggregate pre-/post-synaptic pulse coincidence rates between neurons at q and r,R . These terms 

can be introduced to a normalized learning rule, as follows. 

 

Physiological findings indicate that the Hebb rule operates under the concurrent influence of pre-
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synaptic cooperation of synapses (Tsukada and Fukushima 2010) and synaptic competition for vital 

metabolic resources – notably neurotropins (Harris et al 1997; van Ooyen and Willshaw 1999; van 

Ooyen 2001; Elliot and Shadbolt 2002) but probably for many factors. The pre-synaptic cooperative 

effects imply the synchronous field must facilitate Hebbian consolidation, while metabolic resource 

competition imposes a form of competitive normalization. Steady-state solutions of the mass action 

effects operating upon the many synapses at a point in the neural continuum can then be expressed in 

sigmoid functions  

 

αR

q = 2(1+ exp[−(hCR

q + gJ q )])−1       (3a) 

βr

q = 2(1+ exp[−(hCr

q + gJ q )])−1       (3b) 

hCr,R
q  describes the Hebbian effect, gJr,R

q  describes the pre-synaptic cooperative effect, and h,g   

represent some ascending functions of Cr,R
q , with the consequent property that if h∧ g are positive 

valued, then at equilibrium αR

q ∧ βr

q  tend to a value of two, and if h∧ g are negative valued, then at 

equilibrium αR

q ∧ βr

q  tend to a value of zero. Thus the signs of h∧ g enable simple representation of 

success or failure in a “winner take all” metabolic competition.  

 

We further assume that evolutionary pressure would develop neural networks of maximum 

information processing capacity. Sparseness of synaptic connections, their noisiness and weakness, 

and the wide variation of synaptic weights, is consistent with the maximization of information storage 

per unit volume of cortex (Varshney et al 2006). The most simplified case consistent with 

experimental findings (O’Connor et al 2005a,b) is where there are only two distinct synaptic states - 

saturated gain and zero gain. In that case, in equations (3a,b) αR

q ,βr

q  have maximum/minimum values 

2 or 0, with synapses able to alternate between the two states, depending on available resource. Where 

metabolic resources can sustain only half the synapses in the saturated state, then H , the Shannon 

entropy for n  synapses, based on unconditional probabilities, is maximized 

  

H = − pi log2 pi

i=1

n

∑ →max        (4) 

 

pi = 0.5 for each synapse - and the average synaptic gain is unity.    

 

Descriptions of Models 
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……………………………………………………………………………………………… 

  

We next present a set of three models of response properties, in a related formalism. Firstly, a 

representation of the connection structure which emerges in standard models. Secondly, a model 

depending on synchrony and metabolic competition – differing from the assumptions of the standard 

model – that accounts for the emergence of patchy connections. Finally, a reconciliation of the second 

model with our earlier concept of local Möbius connectivity, providing a new, more complete model 

and enabling critical test against the standard models. 

  

Standard model 

 

The emergent connection structures of standard models for OP, where OP is measured using slowly 

moving stimuli (Swindale 1996), implicitly including representation of OC, DP and SF, can be 

represented in a form permitting comparison with the two subsequent models, as follows: 

 

Figure 1 shows an idealized set of adjacent macrocolumns in V1, arranged in an hexagonal array of 

elements, each containing typical OP singularities, linear zones and saddles. Superimposed, as semi-

transparent tubes, are hypothetical lines of excitatory connections linking excitatory neurons together 

so they respond selectively to oriented visual stimuli transmitted to the classic receptive fields (cRF). 

“Like to like” connections bridge areas of common OP between macrocolumns, in the fashion of 

patchy connections.  

        

[Figure 1 about here] 

 

Positions in the field can be defined as: 

 

{R}  (the global field). Vector positions on the surface of V1.  

 

{r}  (the local field). Vector positions within a column, of diameter a little less than the spread of 

dendritic and local intracortical axonal trees of pyramidal cells in V1 and embedded in {R}.  

 

{R} ≡ {{r}i} A set of similar reference frames to {r} such that V1 is tiled by the set. 
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Interactions between {R} and {r} are representative of all interactions between the global field and 

each {r}i . “Like to like” connections act as a mapping from the global (V1) to the local 

(macrocolumnar) field. The two-fold rotational symmetry of oriented lines results in the 

representation at the singularity of stimulus line angles from 0 − π , over 0 − 2π . Consequently the 

“global to local map” (Alexander et al 2004) can be represented as a 2:1 complex-multiplication map  

 

R⇔r
2(ϑ ±ϕ)          (5a) 

 

where the bracketed terms (ϑ ± ϕ)  indicate that only a subset of {R} and {r} - those points with 

common OP, ϑ , within some angular deviation, ϕ - are connected by excitatory connections. Also, 

excitatory connections between any two points, 1 and 2, within each macrocolumn link points of 

common OP 

 

r1(ϑ ± ϕ)⇔ r2(ϑ ± ϕ)          (5b) 

 

With appropriate orientation and chiralities, {{r}i} maintain continuity and completeness at the 

borders, with resulting linear zones and saddles.  

 

 

A Euclidian model of the superficial patch system 

 

The purpose of this model is to explain the origin of the superficial patch system as a consequence of 

supply of information from the neural field, as inferred by Muir and Douglas (Muir and Douglas 

2011) and also to explain the continuity of OP maps, their tendency to hexagonality and their lack of 

order in some species.  We call this model “Euclidean” because the pattern of synaptic connections it 

predicts can be simply represented on the Euclidean plane, as in most neural field models (eg Wilson 

and Cowan 1973; Freeman 1975; Haken 1976; Nunez 1981; van Rotterdam et al 1982; Jirsa and 

Haken 1996; Robinson et al 1997; Rennie et al 2000; Robinson et al 2001; Chapman et al 2002; 

Wright et al 2003; Wright 2010).  

 

Embryological observations (Price 1986; Callaway and Katz 1990; Durack and Katz 1996; Ruthazer 

and Stryker 1996) indicate the developing cortex extends lateral synaptic connections at two scales, 

corresponding to intracortical short-range and to long-range connections spanning more than a 

macrocolumn, each with densities of potential synaptic contact to surrounding neurons declining 
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exponentially with range, and with the two types of connections arising from partially or wholly 

distinct neuron populations. Emergence of a similar organization, leading to a small world 

configuration, is seen in neural cultures (Downes et al 2012). We will not attempt to explain why 

connections on two scales occur. The selection of consolidated connections from the uniform initial 

state, to create characteristic patchy connections, is to be explained, as is the high degree of variation 

of these patches in different species. 

 

Our hypothesis is that pre-natal development proceeds under cell pruning and metabolic competition 

until a distribution of saturated synapses emerges, such as to sustain the average state of the activated, 

synchronously oscillating, cortex in equilibrium, and thus, reciprocally, to sustain the synapses in 

stable states. That is, we find the conditions in which the maximization of equation (2) is realized via 

equations (3a,b, 4) and equations (6a,b), which are next defined.  

  

Pre-/post-synaptic pulse coincidence rates (CR

q  and Cr

q ) generated via intracortical and long-range 

connections at any point, q in the field, are required in equation (2), and can be parameterized from 

neural field theory, summarized in the Appendix: 

  

CR

q = r
Nα

N

1

λα

exp[−λα q −R ]Q 2       (6a) 

Cr

q = r
Nβ

N

1

λβ

exp[−λβ q − r ]Q 2        (6b) 

The fraction of coincident pre- and post-synaptic pulses that coincide is r ∈{0 −1} , a declining 

function of q − r,R  and Q  is the mean field excitatory pulse rate. Nβ  and Nα  are numbers of 

intracortical and long-range pre-synapses per neuron; λα  and λβ  are inverse length constants for the 

initial distribution of pre-synapses on the longer-range and shorter-range axonal trees respectively, 

and Nα + Nβ = N .  

 

Emergence of patchy connections in hexagonal array, with spared zones about singularities 

 

The anatomical findings of Boucsein and colleagues (Boucsein et al 2011) indicate that Nβ ≥ Nα  and 

λα < λβ . In principle, via equations (6a,b), equation (2) has parameter ranges which may vary from 

Nβ >>> Nα  to Nβ <<< Nα , and from λα <<< λβ  to λα ≈ λβ . 

Page 10 of 46Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

We first consider the case Nβ >>> Nα  and λα <<< λβ , where long-range connections are sparse, but 

long-range, compared to short-range connections, and show that this leads to an orderly solution.  

We avoid difficult analytic and numerical methods to maximize equation (2) by appeal to 

arithmetical, physical, and geometric requirements for the solution.  

 

 Since Nβ >>> Nα , the terms βr

q
Cr

q

r

∑ (βr

q = 2) in equation (2) are the major terms, and are 

largest, according to equation (6b), if the cell bodies of origin of short-range saturated synapses are 

clustered together, excluding long-range saturated connections, so as to minimize distances of 

separation, {q − r} , while also maximizing the number of such connections by forming the largest 

possible aggregates connected wholly by short-range connections. Such an aggregate we term a β- 

patch.  

 

Neural field simulations indicate (Wright 2009, 2010) that maximization of mean value of pre-/post-

synaptic coincidence, r , in equations (6a,b) requires reciprocal saturated connections, and without 

long-range couplings, in the presence of neural noise, the mean value of r  tends to zero – so some 

long-range saturated synapses must exist. Because cell bodies in β- patches must be gathered at close 

proximity, then cell bodies connected by long-range saturated connections must form some inter-

dispersed α connection system, and stable configuration then requires that the α  system and the β-
patches have regular periodicity. 

  

Consequently, the α system must form some regular polygonal mesh, tiling the cortical surface, and 
embracing β- patches. Of the three regular polygonal tilings of the plane, that mesh permitting the 

embracement of the largest intervening patches, is an hexagonal tiling. From equations (6a,b), there is 

a critical distance, q − r,R = x , where x = (ln
Nβ λα

Nα λβ

) /(λβ − λα ) such that CR

q > Cr

q  over distances 

greater than x . Therefore, saturated pre-synapses on axons from cell bodies in the α  system must 

preferentially form at ranges > x , to have competitive metabolic advantage over short-range synapses 

from other cell bodies near the same position.  Therefore the α  system must contain α -patches. 

Long range connections from individual cells in the α  system extending to make connections with 

other α -patches over several times the diameter of the β-patches would further increase the mean 

value of r .  
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The outcome is that β-patches, of radius approximate to x , become enclosed in an hexagonal mesh of 

α-patches, of inter-patch distance approximate to x . (See Figure 2, Top.)  

 

[Figure 2 about here] 

 

Between-scale mapping and continuity in adjacent macrocolumns 

Since maximization of the terms βr

q
Cr

q

r

∑  in equation (2) requires maximum resonance, the α -

patches must form recipocal saturated connections with some neurons in theβ - patches such that 

spatial frequencies of synchronous oscillation are matched to maximum resonance throughout the 

field. This implies a 1:1 mapping of saturated connections between scales is created. Thus the centres 

of β -patches become singularities corresponding to the centre point of a map of positions radiating to 

and from the complete surrounding cortical surface, without the angular restrictions in equations 

(5a,b) – ie: 

 

R⇔ r            (7a) 

 

Within each macrocolumn, excitatory connection strengths are not functions of the angles ϑ,ϕ , but 

simply inverse functions of distance of separation  

 

r1 ⇔ r2           (7b) 

 

[Figure 3 about here] 

 

Maximization of resonance is further achieved if adjacent β - patches have homologous points on 

their respective 1:1 maps at shortest distances. This requires adjacent local maps to be aligned with 

orientations and chiralities as mirror images, each of the other – a condition which can be 

approximated with broken symmetry, and which ensures continuity of maps at their borders. (See 

Figure 3). 

 

Interspecies variation of map organization. 
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As mentioned in the Introduction the repeating hexagonal symmetry of OP and the superficial patch 

system is approached as an idealization in some species, while in others it is effectively absent 

(Horton and Adams 2005). We showed above that at the limits Nα <<< Nβ  and λα <<< λβ  the 

patchy connection meshwork approaches perfect hexagonal rotational symmetry (see Figure 2 Top). 

At other limiting parameter ratios this is not the case. 

 

If λα ≈ λβ , no distinction between long-range and short-range connections is present, and an ordered 

structure based on range distinction could not emerge. Retaining the restriction λα <<< λβ , but 

allowingNα ≥ Nβ , then the size of β - patches would be diminished and regular packing of any sort 

need not emerge (see Figure 2 Bottom).  

 

The absence of apparent order need not imply a loss of functionality. So long as λα < λβ  then 

connections maximizing co-resonance between any restricted area of cortex and its greater surround 

would still occur.  

  

Success and failure of the Euclidean model 

 

The Euclidean model accounts for the disposition of patchy connections, their absence about 

singularities, and the associated hexagonal periodicity of patchy connections. But the model fails 

since the 0 − π  range of OP about a singularity is represented twice.   

 

A unified Euclidean and Möbius model      

 

Assumptions made for the Euclidean model can be modified so as to overcome that model failure, by 

combining the concept of organization of short-range intracortical synapses into a form analogous to a 

Möbius strip (Wright et al 2006; Wright & Bourke 2008) with the Euclidean model’s explanation of 

patchy connection evolution and hexagonal symmetry. This is achieved by making the assumption 

that competition for metabolic resources takes place at a smaller scale than necessarily implied in the 

Euclidean model, so that synapses arising from closely adjacent parts of the same axon must compete 

for metabolic resources. A site of connection, q, can now be subdivided to two locales, ′ q  and ′ ′ q , 

representing the terminations of saturated, versus zero-saturated, synapses from r,R . Because of the 

close physical proximity of ′ q  and ′ ′ q , the resulting 1:1 map is the projection of a Euclidean plane 

(the patchy system of V1) to a Möbius plane centered about each OP singularity. The topological 

identity of a Möbius strip and a circle permits retention of the 1:1 global-to-local maps of the 
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Euclidean model. This geometry can be physically realized in a meshwork of excitatory synaptic 

connections closing after circling twice about a central point in each macrocolumn, and receiving 

patchy connections from opposite sides of the global field at closely situated positions, but on 

opposite limbs, on the mesh (see Figure 4). Because of the angle-doubling property of projection to a 

Möbius plane, angles of projection from the global to the local maps from 0 −2π  are now folded 

about the singularity, corresponding to the angle-doubling about OP singularities, and continuity of 

OP in surrounding macrocolumns is identical to that of the standard model. Adjacent points ′ q  and ′ ′ q  

designated as saturated or zero-saturated may be dynamically alternating on short time-scales. 

 

In analogy to the preceding models 

       

R⇔ r[2]            (8a) 

 

and 

 

r1
[2] ⇔ r2

[2]          (8b) 

 

The superscript notation [2] is used to indicate the resemblance, viewed from a third dimension, 

between projection from a Euclidean to a Möbius plane and the complex-multiplication projection 

between two Euclidean planes ascribed to the standard model in equation (5a).   

 

 [Figure 4 about here] 

 

We subsequently refer to this unification of the Euclidean model with our earlier Möbius model, as 

“the Möbius model”. 

 

 

A Critical Test – Simulation of “Spatio-temporal Energy” responses     

  

…………………………………………………………………………………………………………. 

 

Comparison of models 

 

The standard and Möbius models can be compared in a critical test – reproduction of the findings of 
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Basole and colleagues (Basole et al 2003). The standard model is expected to fail for the reason given 

in the Introduction – that the inhibitory surround on which standard models depend ought to suppress 

the near-orthogonal rotation of OP seen to occur at high speeds of translation of visual lines that are 

not orthogonally orientated to the line of passage – but this requires to be demonstrated.  

 

According to the Möbius model, the lateral transfer of transient contextual signals over the established 

patchy system, to each macrocolumn, can be expressed as 

 

O(R,t)⇒ {O(r[2],t +
R+ r +Ci

ν
)}i        (9a) 

 

where O is an object representation projected to V1 by the direct visual path, and relayed to 

representative macrocolumns, {{r}i}  (where each {r}i  has appropriate orientation and chirality),Ci 

is vector distance from the origin of {R}  to the origin of {r}i , and ν  is the velocity of polysynaptic 

wave transmission.   

 

The equivalent contextual signal transmission in the standard model is 

 

O(R,t)⇒ {O(r 2(ϑ ± ϕ),t +
R+ r +Ci

ν
)}i                                (9b) 

 

Simulations using equations (9a) and (9b) can be compared to the experimental findings of Basole and 

colleagues. Successful reproduction of their findings would also explain the tuning of V1 neurons to 

spatial and temporal frequency reported by DeAngelis and colleagues (DeAngelis et al 1993) since 

the mathematical identity of these two types of findings has already been demonstrated (Baker and 

Issa 2005; Mante and Carandini 2005). 

 

Method of Simulation   

 

Equations (9a) and (9b) were each applied in a simulations of an hexagonal array of seven adjacent 

macrocolumns. Cortical magnification factor was not considered a significant distortion in a 

comparatively small cortical area. For simplicity we considered the monocular case, in the area of V1 

outside the zone organized into ocular columns, although the simulation architecture is readily 

modified to include the binocular case, with little implication for the results to be reported. The 
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assumed diameter for each macrocolumn was 300 microns, and wave speed for transcortical 

polysynaptic propagation 0.1 m/s (Bringuier et al 1999). Simulation time-step was 0.1 ms. Units of 

distance or length subsequently referred to, are multiples of the radius of a macrocolumn – 150 

microns. 

 

A moving line in the visual field, relayed by the direct visual pathway to the cRF of each 

macrocolumn was represented graphically as a red bar, moving with a speed measured as bar 

speed/wave speed. The lag-transmitted image of the red bar, relayed as subthreshold activation to each 

macrocolumn via the superficial patch system) was shown in green, with a 3:1 reduction from the 

global to local scale. Passage of the relayed visual stimulus across a macrocolumn was shown as 

bright illumination about the zone of subthreshold activation, to indicate that input to the cRF from 

the direct visual pathway and contextual signals had caused triggering of action potentials. The epoch 

of illumination began at the time-step at which the red bar crossed the center of each macrocolumn, 

and continued until the time-step at which the red bar passed beyond the macrocolumn’s boundary. In 

a single simulation the red bar travelled across the entire hexagonal array from left to right, with 

constant speed, direction and orientation. The orientation of the red bar to the line of passage was 

measured as bar angle from 0 degrees, where the bar was oriented orthogonally to the direction of 

travel, to ±90  degrees, where the bar was oriented in the direction of travel.   

 

During the illuminated epoch, the average angle from the macrocolumn singularity to the centers of 

action potential generation (ie, all points on the green line) was calculated at each time-step, and 

shown as a black arrow. This indicated the part of the macrocolumn’s neural field which was 

currently most stimulated by the combination of the cRF and the contextual input – and thus indicated 

the part of the macrocolumn with a response preference (apparent OP) for the particular bar 

movement. (In relation to conventional experimental measures, a change in the sector of the 

macrocolumn which is maximally stimulated is equivalent to an equal change in the angle of approach 

of the bar needed to maintain stimulation of the same sector). The black arrow angle was averaged 

over a window beginning after the red bar had passed the center of the macrocolumn by a distance 

equal to 10% of macrocolumn radius, and extending from the 10th percentile to the 20th percentile of 

that radius, thus obtaining an estimate of the apparent OP during the cRF activation time. At low bar 

speeds this corresponded to approximately the 100th to 200th time-step in the illuminated epoch.  

 

The standard error (SE) of the black arrow angles was calculated from 11 equally spaced time steps 

through the averaging window, independently of bar speed. The SE, and the breadth of the 

illuminated area during the illuminated epoch, gave indications of the breadth of OP tuning, although 
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tuning response curves were not simulated per se.  

     

Combinations of bar-length, orientation of the bar to the direction of movement, and bar speed, were 

then systematically varied in separate simulations. Their effects on OP, measured at the central local 

map of the hexagonal group, were obtained as OP difference – a measure of the change in OP as a 

function of these variables - calculated as  

 

OP difference =
[apparent OP] − [reference OP]

2
      (10) 

 

where reference OP was the apparent OP found at the lowest bar speed applied (bar speed/wave speed 

= 0.1), the angular difference was the smaller of the differences between the apparent and reference 

OP angles (to avoid wrap-around ambiguities), and division by 2 preserves the convention that OP is 

on the range 0 − π .  

 

The results shown in Figures 6 and 7 showed some systematic variation with choice of duration for 

the averaging window, but no qualitative differences. A change in estimated wave speed was also 

without quantitative effect, when averaging window length was appropriately adjusted, and results 

were interpreted as the ratio of bar-speed and wave-speed. 

 

Simulation Results  

 

Simulation features for the Möbius model are shown in Figure 5, as the visual stimulus of a moving 

bar, travelling at half the wave conduction speed, orientated at 60 degrees to the line of passage, and 

moving from left to right across V1, mimics activation of the macrocolumns.  

    

   [Figure 5 about here] 

 

Figure 6 graphs OP difference versus bar speed / wave speed, for bar angles 0 to ±90  in the Möbius 

model, calculated for a bar length of 4 units. The inserts show three examples of the change in 

apparent OP with increasing bar speed for bar angle = 45 degrees, showing the orthogonal 

transformation of apparent OP from the lowest to the highest bar speed, and also that the angular 

breadth of cortical subthreshold activation, analogous to the width of tuning of the OP response, is 

narrow at the lowest bar speed, and broadens as bar speed approaches wave speed. 
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   [Figure 6 about here] 

  

For the case of bar-angle 90 degrees (a line oriented along its direction of passage) Figure 6 shows 

that velocity exerts no OP difference. In contrast, for the case of bar-angle zero degrees (a line 

oriented orthogonally to its direction of passage, as in classical measurements of OP) no OP 

difference is seen until, as bar speed approaches wave speed, a 90 degree change in apparent OP takes 

place at a single increment in speed. This corresponds to transition to a “motion streak”, as object 

movement blurs resolution in the direction of motion. Increasing OP difference with bar speed at 

other bar angles is a more gradual development of the same effect – that is, mixing of responses to 

object speed and to object orientation.  

 

The impact of line extension on the relations between OP, speed, and object orientation, are shown in 

Figure 7. Here, graphs in the form of figure 6 are shown for bar length 1, bracketed above and below 

by limiting cases of small (0.25 units) and very large (16 units) bar lengths.  

With small bar length, OP difference diminishes for all bar speeds compared to intermediate bar 

lengths, and particularly so at high bar speeds. For bar speeds approaching wave speed, SEs are very 

high, and for bar angle zero, the apparent OP apparently undergoes sequential orthogonal shifts as bar 

speed increases through this critical speed range.1 These features show the highly unstable 

relationship between short lines of corresponding high space frequency orthogonal to their direction 

of motion, and their “motion streak” spatial-temporal frequency in the direction of motion itself. 

 

In contrast, for very large bar length, all bar angles exhibit small OP differences at increasing bar 

speeds, until apparent OP undergoes an orthogonal transformation at a bar speed which differs with 

each bar angle.  

 

                             [Figure 7 about here] 

 

These results match the findings of Basole et al 2003 in the moderate bar length and bar speed ranges, 

while the limiting cases confirm indirectly that apparent OP has components of response to the spatio-

temporal frequencies of the visual stimulus, as was shown by fitting of Fourier components to the data 

                                                        

1 The second reversal of OP difference can be shown to result from the development of dual solutions 
to the map equation (9a) that occurs when the visual stimulus bar has passed the system origin and bar 
speed is greater than wave speed.   
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(Baker and Issa 2005; Mante and Carandini 2005; Basole et al 2006).      

 

In contrast, simulations using the standard model showed a limited effect. The example shown in 

Figure 8 assumed a restriction to ϕ = 45 degrees, in equations (5a,b, 9a,b) – that is to a 90 degree 

wedge of mutually excitatory connections about the singularity for any given OP – representing 

generous excitatory overlap of adjacent areas of OP. To attain the full range of OP difference actually 

found experimentally, ϕ would require a value of 180 degrees, which contradicts the principle of 

mutual inhibition on which standard models are based.   

 

   [Figure 8 about here] 

 

 

Proposed further anatomical and physiological tests       

………………………………………………………………………………………………………… 

Since the Möbius model passes its first critical test, it may be asked what further tests are practicable. 

Detailed simulations developed from those described above would permit further precision of match 

to experiment. The architecture of the simulations can be extended to include binocular columns, 

cortical magnification factor, improved estimates of dendritic time constants, wave speed and range of 

patchy connections, so as to permit precise comparison with bar speeds, bar length, and OP difference 

in experimental data. On the other hand, the corresponding experimental data currently available in 

the literature is incomplete with respect to all possible bar angles and bar speeds, so improved 

experimental data would also facilitate comparison. For psychophysical data, improved estimates of 

bar speed (as projected to cortical level) and wave speed would confirm whether or not the model 

correctly predicts the appearance of motion streaks, and visual jittering, at the correct ratios of bar 

speed wave speed at various bar angles and lengths.  

 

Conventional anatomical tests are possible in regard to the terminations of patchy connections in the 

periphery of the patch-free areas about singularities.  As indicated in Figure 4, two populations of 

synaptic connections should be demonstrable in principle, by double injection/staining methods, near 

the singularity/patch edge.  

 

As exemplified in Figure 5, observation of LFPs during the passage of a stimulating bar should reveal 

patterns of cRF activation with similar characteristics. The animations of the simulations also provide 

material for comparison in experiments outside that of single macrocolumns. Figure 9 gives an 

instance. This frame from a simulation shows a line moving from left to right, oriented orthogonally 
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to the direction of motion, travelling with bar speed/wave speed = 0.8. The black arrow of the central 

macrocolumn indicates an OP response that is intermediate between those of the OP responses in the 

top and bottom macrocolumns – which themselves indicate orthogonal OP responses. Comparison 

with Figure 5 shows that at low bar speeds, disparities between adjacent macrocolumns are not 

predicted.  

 

   [Figure 9 about here] 

 

No confirmation exists of Möbius-like patterns of connections in cortex, but Markram and colleagues 

(Perin et al 2011) found that pyramidal neuron networks cluster into multiple groups of a few dozen 

neurons each, with the neurons composing each group typically more than 100 µm apart, allowing for 

multiple groups to be interlaced in the same space. Connections between groups were relatively 

sparse, and of necessity linkages between interlaced groups were not exhaustively mapped, so 

interlinkages between groups to form Möbius-like networks, while possible, are neither proven nor 

disproven (see Figure 10). Further work using similar methods might support or disprove this 

inference. However, anatomical demonstration by this means may be is subject to a major difficulty – 

the temporal plasticity of synaptic connections near singularities (Dragoi et al 2001) – which may 

mean that the two conditions shown in Figure 10 are capable of alternation and reassembly in many 

detailed variants. A related caveat is that the Möbius organization may be clear-cut only in the late 

antenatal and pre-experiential stage of development, and might be wholly or partially overwritten by 

later developments during visual experience, as further considered in the Discussion.  

 

   [Figure 10 about here] 

 

Discussion 

…………………………………………………………………………………………………. 

 

To recap, in line with assumptions made in our earlier model (Wright et al 2006; Wright & Bourke 

2008) we have assumed that (a) the equilibrium state of the activated cortex is zero-lag synchronous 

oscillation (b) Hebbian learning at synapses is modulated by pre-synaptic cooperative effects from 

nearby synapses (c) synaptic competition for metabolic resources permits only about a half of 

synapses to develop to a saturated state - and have added the further assumption that (d), in early 

cortical development lateral connections are isotropic, and decline exponentially with distance on two 

scales . The further assumption yielded a model now including the superficial patch system, and a 
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rationale for the detailed simulation of signal transmission across the cortex. More detailed 

understanding of the processes and priorities underlying early cortical development might make the a 

priori assumption of two scales of connection unnecessary, as two scales of connection may emerge 

under the aegis of maximized stability and information transfer, as suggested by the in vivo neuron 

growth experiments of Nasuto and colleagues (Downes et al 2012). 

    

We have accounted for the hexagonal periodicity of OP and the patch system in some species (Paik 

and Ringarch 2011) and the absence of any such clear organization in others (Horton and Adams 

2005). Muir and colleagues (Muir et al 2011) commenting on interspecies difference in the orderliness 

of superficial patchy connections, remark that the differences between rodents, which lack both 

smooth OP organization and a superficial patch system, and primates and felines, which have well 

organized systems of both types, cannot lie in the species’ lines of inheritance, since rodents are more 

closely related to primates than primates are to cats. They suggest that, alternatively, the difference 

may lie in one or more developmental parameters – for example the smaller size of visual cortex, or 

the degree of like-to-like preference exhibited by the superficial layer neurons. Our findings are 

consistent with both these possibilities. The emergence of a strongly hexagonal patch configuration 

came from the parameter choices λα << λβ  and Nβ >> Nα . These constraints imply longer-range 

signal transmission, and the possibility of more focal terminal distribution of the fibres in the patch 

system.   

 

We have also found in the self-organization of α  and β-patches a mechanism via which information 

transfer within the cortical field may lead to the absence of patchy connections about the singularities, 

in answer to the problem posed by Muir and Douglas (Muir and Douglas 2011). Our model is 

consistent with further findings from that group (Muir et al 2011) who have shown that “the patch 

system and cortical responses display a well-defined signature of their spatial configuration…this 

configuration is shared between the anatomical and functional systems [and] …the clustered 

projections…promote the expression of cortical activity states that correspond to statistical 

expectations of regularity in the visual world”. Our model defines this description in terms of lag 

transmission of activity in the surrounding cortex to the areas surrounding each singularity.  

 

As a critical test, we have shown that the Möbius model is able to explain increasing variation of 

apparent OP for increasingly rapid moving lines at variable angles of attack (Basole et al 2003) and in 

doing so does not depend on the assumption of fixed feature-detection attributes of particular cells 

whereas standard models – all those based upon alignment of excitatory connections and “like to like” 
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couplings - are unable account for the same experimental data. The only other available explanation 

for the same data is to suppose individual V1 cells have intrinsic responses to spatial and temporal 

Fourier components in cortical signals (Baker and Issa 2005; Mante and Carandini 2005). This 

alternative is equivalent to the Möbius model in the sense that Fourier and time-series analyses are 

equivalent, but we have shown that assumption of individual cell tuning to particular frequency bands 

is not required. Since the our model depends upon wave transmission over patchy connections, it is 

also in accord with observations of traveling and standing waves in V1 associated with stimulus 

responses (Benucci et al 2007). 

 

There is a further concordance of all these ideas with the findings of Dragoi and colleagues (Dragoi et 

al 2001) who showed “the existence of a map of orientation plasticity, closely related to the map of 

orientation preference, in which pinwheel centers constitute foci of plasticity and the orientation 

gradient is a measure of the degree of plasticity across V1.” That is, they found plasticity of responses 

near OP singularities, and lack of plasticity in linear zones – the areas of strong patchy connection 

termination. This is to be expected if the patch system is composed of well consolidated connections 

suitable for consistent transmission with delay from fixed points in V1, while of the other hand, more 

complex, continually modified, information processing goes on in the areas around singularities. 

Since the local map is a folded representation of the space around each macrocolumn, the Möbius 

configuration would facilitate the expression of transient cross-correlations in signal inputs, since the 

folded structure minimizes average distances of separation between points on the local map. Transient 

short-range couplings, subject to rapid modulation in response to synaptic metabolic competition, 

created and decaying in response to inputs received via patchy connections, would permit the system 

to exploit the information representation capacity implicit in the model. We have assumed that 

synapses exhibit maximum Shannon entropy based on unconditional probabilities, whereas their 

mutual information would specify a specific pattern of information flow. The Möbius configuration 

may be a ground state of the synaptic configuration, the mutual information of the synaptic 

connections representing the average cross-correlation structure of stimulus space in the absence of 

structured inputs, but providing a base structure for transient representations. For the case of long-

range, line-like visual stimuli, the transient representations would occur as local breakdowns of the 

Möbius structure, tending toward a structure similar to the standard models, although arising by a 

different mechanism, and in that case, such transient fluctuations in connectivity can be given a 

shorthand representation: 

 

r
2 ↔ r

[2]          (11) 
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The antenatal development of response maps (Wiesel and Hubel 1974; Blakemore and Van Sluyters 

1975; Sherk and Stryker 1976) presents no paradox, since emergence of the Möbius configuration 

does not depend upon structured visual stimuli. EEG activity progressively matures toward alternating 

synchronous and asynchronous states in the later antenatal period (Marks et al 1995; Mirmiran 1995) 

providing the co-ordination of pre-synaptic activity required for initial synaptic self-organization. 

With post-natal development and learning, the Möbius pattern may, as argued above, become to some 

extent, permanently or transiently overlain with connections storing specific correlations characteristic 

of the stimulus field, superimposed on the pre-experiential framework. This supposition implies that 

anatomical tests of the model might be better conducted on the pre-experiential cortex, since a flexible 

capacity for temporary or permanent overwriting of the Möbius configuration would increase the 

difficulties of anatomical testing.  

 

If this model is confirmed by subsequent anatomical evidence there are wide implications for cortical 

information processing. Cortical dynamics could then be considered in terms of two interacting global 

attractors – an attractor for pulses (the equilibrium synchronous field) and an attractor for synaptic 

configuration (the patch-connected Möbius networks). To the writers’ knowledge, no detailed 

dynamical theory along those lines has been developed. On the other hand, the proposed synaptic 

organization is an old friend in disguise - each macrocolumn an homologous map of surrounding 

cortex, in a form concealed by the folding of synaptic networks. The smaller scale of contextual 

connections is thus similar to the homologous spatial organization of primary sensory and motor 

cortices and elsewhere in the brain (Kaas 1997) – so each macrocolumn does not primarily receive 

information about concurrent correlated features, but instead gathers spatially distributed information 

from its neighbors, with temporal context determined by conduction delays. This suggests that cortical 

information transfer may depend upon superposition of spatio-temporal images at multiple scales and 

levels of cortical organization however modified these images become during later learning.  

 

Appendix 

………………………………………………………………………………………………….. 

Derivation of pre-/post-synaptic pulse coincidence rates, CR

q
 and Cr

q
 

A general form of neural field equations (Wright 2009, 2010) is 

 

ϕq (r,t) = fq (r, ′ r )Qq ( ′ r , t −
r − ′ r 

ν
∫ )d ′ r      (1.1) 
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Vq (r,t) = G(Vq (r), ϕq (r))(t − τ)∗ f s(τ)
q= e∧q= i

∑ )     (1.2) 

Qq (r, t) = fΣ(Vq (r,t))         (1.3) 

 

where ϕ ;Q ;V , are afferent synaptic flux, pulse density, and dendritic voltage (LFP).  

Subscriptq = e,i refers to excitatory or inhibitory neurons; r, ′ r  are cortical positions. 

fq (r, ′ r ) is density of afferent axo-synaptic couplings with axonal conduction velocity ν . 

G(t − τ)∗ f s(τ) is the nonlinear transformation of the excitatory and inhibitory synaptic flux into 

dendritic potentials. 

fΣ(Vq (r, t))  describes the local conversion of dendritic potentials into action potentials.  

 

With parameters set to physiological values, equilibrium solutions are oscillating zero-lag 

synchronous fields regulated in amplitude by cortical activation. For small deviations of pulse rates 

from their mean values, equations (1.1-1.3) can be represented with regard to the excitatory cells 

alone, as 

 

Q(q,t) = f (q,R)Q(R,t −
q−R

ν
)d(q−R)∫ + Qnoise (q,t)   (1.4) 

f (q,R)d(q−R)∫ = fα (q,R)d(q−R)∫ + fβ (q,r)d(q− r)∫ =1  (1.5) 

fα (q,R) =
Nα

N
α
1

λα

exp[−λα q−R ]       (1.6) 

fβ (q,r) =
Nβ

N
β
1

λβ

exp[−λβ q− r ]      (1.7) 

r  andR are vector positions distant from q, measured along short-range and longer-range 

connections respectively. 

Q  excitatory point pulse-emission rate. 

Qnoise  Poisson-distributed spike trains –  in the activated state, of small amplitude relative to 

amplitude of oscillation . 

ν  axonal conduction speed. 
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fα  distribution of long range axonal tree synaptic density. 

fβ  distribution for short range (intracortical) axonal tree synaptic density. 

N  number of excitatory synapses per neuron. 

Nα ,Nβ  number of synapses per neuron from long range and short range respectively, Nβ > Nα . 

λα ,λβ  inverse length constants for synaptic density, λα << λβ . 

α,β =1 ground value of synaptic gain. 

The field is stabilized by inhibitory feedbacks, which generate a zero-lag synchronous oscillation. In 

the presence of superadded noise the fraction of pre-synaptic pulses, from cells at some other given  

position, and post-synaptic pulses at the reference point q , that coincide, is given by r ∈ {0 −1} - a 

function which declines with the distance of separation. The mean field excitatory pulse rate Q , and 

the mean value of r , is regulated by cortical activation. 

Therefore pre-/post-synaptic pulse coincidence rates, CR

q  and Cr

q , can be defined as   

Cr,R
q = [coincident fraction of pre −& post − synaptic pulses]

× [mean pre − synaptic pulse density]

× [mean post − synaptic pulse rate]

 

and thus    

CR

q = r
Nα

N

1

λα

exp[−λα q−R ]Q 2      (1.8) 

Cr

q = r
Nβ

N

1

λβ

exp[−λβ q− r ]Q 2      (1.9) 

………………………………………………………………………………………………………….. 
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Legends for Figures 

 

Figure 1. 

Standard model.  

Colours of the spectrum indicate OP.  

Top: A cluster of seven macrocolumns in hexagonal configuration. OP for lines of orientation 0 − π  

surround pinwheel singularities over angles 0 − 2π , merging with neighbours to form linear zones 

and saddles. Lines of excitatory synaptic coupling of neurons, shown as transparent tubes, radiate 

about singularities, connecting “like to like” OP. 

Bottom: inset from rectangle in diagram above, showing disposition of strengthened synaptic 

couplings (black) between mutually excitatory cells of unique OP, with synaptic couplings weakened 

by longer-range inhibition (white) surrounding the self-excitatory OP group.  

Figure 2.  

Patchy connections and singularities, self-organized in a synchronous neural field. Pale circles: 

neurons surrounding singularities, coupled by saturated short-range connections. Black circles: 

neurons giving rise to and receiving saturated long-range patchy connections. Grey background: 

neurons receiving saturated connections of both types. Dashed lines are of length 

x = (ln
Nβ λα

Nα λβ

) /(λβ − λα ). 

Top:Nβ >>> Nα  
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Bottom: Nα > Nβ  

 Figure 3. 

 Euclidean model. 

Top: In the hexagonal configuration, OP for lines of orientation 0 − π  repeats twice about a 

singularity. Lines of excitatory synaptic coupling of neurons radiate about singularities. Patchy 

connections arise from cell bodies as in Figure 2 (Top), shown as large circled + and x signs. Their 

corresponding terminations on cells at the periphery of each macrocolumn are shown as small circled 

+ and x signs. 

Bottom: inset analogous to that in Figure 1, shows disposition of short-range saturated (black) and 

weaker (white) synaptic couplings. 

Figure 4. 

 Möbius model. 

Top: OP for lines of orientation 0 − π  surround singularities over 0 − 2π . Lines of excitatory 

synaptic coupling of neurons are rolled into a meshwork that is closed over 4π . Patchy connections 

from opposite sides of the macrocolumn terminate on closely situated, but separate, cells, on the 

periphery of the singularities.   

Bottom:  inset shows short-range saturated (black) synaptic couplings are deployed along the Möbius 

mesh, and unsaturated (white) synaptic couplings bridge between opposite limbs of the mesh. 

Figure 5. 

Simulated signal transmission in the Möbius model. A line in the visual field (red line, here moving 

left to right, and orientated at 60 degrees to the line of passage)) is projected to a part of V1. 

Sequential frames, arranged top to bottom, show the beginning, middle and end of the time of 

activation (shown as illumination) of the cRFs of a row of macrocolunmns. Green lines are the red 

line’s image, transferred via patchy connections to each macrocolumn, creating subthreshold 

activation. Black arrows show the angular averages of the green lines, to indicate the field in which 

cells respond maximally once triggered by the cRF. Bar length 6, Bar speed/wave speed = 0.5. 

 

Figure 6. 

Left side: OP difference versus bar speed/wave speed as a function of bar angle, for bar length of 4 

units. Horizontal bars on plotted OP difference indicate SE. 
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Right side: Insets show the central macrocolumn of the hexagonal group illustrated in Figure 5. 

Apparent OP (black arrow) is at the median time step of the averaging window, for bar angle 45 

degrees, at high, intermediate and low bar speeds, with corresponding visual bar position (red), and 

area of subthreshold activation (green line and area of surrounding illumination). 

 

Figure 7. 

OP difference versus bar speed/wave speed as a function of bar angle, for bar lengths 0.25 unit (top), 

1 unit (middle) and 16 units (bottom). 

 

Figure 8. 

Standard model. OP difference versus bar speed/wave speed as a function of bar angle, for the same 

bar length as in Figure 6, with angular overlap of excitation within the macrocolumn set to ϕ  = 45 

degrees.  

 

Figure 9. 

Predicted OP responses, ranging from −90  to +90  degrees, in adjacent macrocolumns in response to 

the transition of the center of a visual line, and the ends of the same line, at bar angle = zero degrees, 

and bar speed/wave speed = 0.8. 

  

Figure 10. 

Top: Pyramidal cell connections, on a scale equivalent to macrocolumns, form interwoven rings (red 

and blue lines) of connected cells, as demonstrated by Perin et al (2011). Dashed lines at 6 o’clock 

highlight closure of the rings over 2π  and, at 11 o’clock, the occurrence of irregular bridging 

connections between rings. 

Bottom: Hypothetical Möbius variant of the same structure. Dashed lines at 6 o’clock highlight 

closure of the rings over 4π  and, at 11 o’clock, the occurrence of systematic bridging connections 

between rings, to maintain continuity of representation of positions.   
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