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Abstract: Freeman’s pioneering work — and neurodynamics in 
general — has largely ignored specification of an anatomical frame-
work within which features of coherent objects are represented, 
associated, deleted, and manipulated in computations. Recent 
theoretical work suggests such a framework can emerge during 
embryogenesis by selection of neuron ensembles and synaptic 
connections that maximize the magnitude of synchrony while 
approaching ultra-small-world connectivity. The emergent structures 
correspond to those of both columnar and non-columnar cortex. With 
initial connections thus organized, spatio-temporal information in 
sensory inputs can generate systematic and specific patterns of 
synchronous oscillation, with consequent synaptic storage. The 
theoretical assemblies of connections resemble experimentally 
observed ‘lego sets’, while facilitation and interference among 
synchronous patterns, particularly when executed by fast synapses 
under metabolic entanglement, imply powerful parallel computation. 
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1. Introduction 

In his highly innovative career, Walter Freeman’s achievements were 
based on his experimentally derived equations for the transfer of 
synaptic pulses to dendritic waves, and dendritic waves to axonal 
pulses (Freeman, 1975). Working with the olfactory bulb of rabbits, 
he identified travelling and quasi-static waves with learned per-
ceptions of the subjects — crucially recognizing that these were not 
merely direct responses to sensory stimuli (Freeman and Schneider, 
1982). His life’s work was concerned with linking theoretical and 
experimental aspects. He recognized the significance of oscillation 
between excitatory and inhibitory neurons (Freeman, 1992), and their 
transition, when sufficiently excited, to a limit-cycle state, differing 
from the background firing, and comparable to a thermodynamic 
phase change. He carried this to a high degree of development in his 
latter career (e.g. Freeman, 2004a,b; 2005; 2006; Buzsaki and 
Freeman, 2015) and, in many publications with his colleagues, 
developed conceptions emphasizing highly nonlinear and far-from-
equilibrium neural interactions. 

Walter strongly encouraged alternative efforts to mathematically 
specify the dynamics of cortical neurons. In this issue, several influ-
ential lines arising from his work are described (Mannino and 
Bressler; Tsuda; Vitiello) and more, by Liljenström (2017). These 
bodies of work share in common a motivation to move neural field 
theory to a more physiologically realistic basis than generally pertains 
in artificial neural networks, but they each differ, in some cases 
fundamentally, in the simplifying assumptions upon which they are 
based. Thus the interpretations of similar data made by each differ, 
and a major challenge for his successors is to compare, contrast, and 
test these proposals, and, if possible, integrate them. It is not at all 
clear how that might be achieved. None of these theories specify 
neuroanatomical detail above the ‘K-sets’ proposed by Walter. 

Characteristically, Walter Freeman took a course independent to the 
dominant stream of cortical neurophysiology, by regarding the exact 
details of connections and activity of single cells as subordinate to the 
dynamic properties of the medium — a viewpoint that can be traced 
back to Lashley and Hebb (Orbach, 1998) and earlier — and contrasts 
notably with (e.g.) Hubel and Wiesel (Hubel and Wiesel, 1959; Hubel, 
1981), who sought to determine function within the classical 
anatomical order — of the organization of parts of the cortex into 
columnar patterns (Gilbert and Wiesel, 1979; 1989: Bosking et al., 
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1997; Girman, Sauve and Lund, 1999; Issa, Rosenberg and Husson, 
2008; Muir et al., 2011) and of the response properties of single cells 
to stimulus ‘features’ — the orientation, spatial, and temporal fre-
quencies of visual inputs (Hirsh and Gilbert, 1991; Angelucci, Levitt 
and Lund, 2002; Horton and Adams, 2005; Kascube et al., 2010; 
Martin, Roth and Rusch, 2014; Bauer et al., 2014; Ji et al., 2015). 

The cell-by-cell reductionist agenda has encountered difficulties. 
Stimulus feature responses were initially thought of as independent, 
atomistic, and inherent response properties of individual neurons. 
Early theories for the origin of neuronal responses presumed feature 
‘tuning’ must emerge consequent to stimulation by visual objects 
(Swindale, 1996). It was soon realized that neurons could exhibit 
stimulus preferences before they were ever exposed to external stimuli 
(Wiesel and Hubel, 1974), yet could also fail to exhibit responses 
when deprived of early postnatal stimulation (Blakemore and van 
Sluyters, 1975). So, some innate organization existed that later was 
sustained or modified by external stimuli. Further, the elemental 
response properties were not independent, but interdependent — viz. 
the orientation response of neurons to a stimulus varies not only with 
orientation per se, but is different with changing speed of the stimulus, 
orientation to the direction of motion, and other factors (Basole, White 
and Fitzpatrick, 2003). 

Thus, it is not just parody to suggest that theories of neural 
dynamics have been developed without more than very general 
anatomical underpinning, and anatomical theories have foundered 
without a sufficiently general foundation in neural dynamics. 

A union between Freeman’s dynamical approach and cellular neuro-
physiology seemed imminent with the discovery of synchronous 
oscillation in individual cortical neurons each activated by separate 
features of a single stimulus (Eckhorn et al., 1988; Gray and Singer, 
1989; Singer, 1994; 1999), so that synchrony became proposed as the 
solution to the ‘binding problem’. This line of research, too, is rooted 
in the work of Walter Freeman (Liljenström, 2017). But an explana-
tion of the origins and interrelationships among feature responses and 
their significance within perceptual wholes remains elusive, and it is 
uncertain why, or even if, oscillation and synchrony are essential to 
the operation of the cortex (Varela et al., 2001; Merker, 2016). 

A reasonably satisfactory explanation would provide sufficient and 
general rules for learned representation of a single perceptual object, 
explain how representations of different objects were distinct from 
each other, yet similar for closely related perceptual wholes, how 
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perceptual wholes could be partially correlated, and how deletion of 
errors and ‘forgetting’ could occur without disruption of the whole. 
Ideally, a substrate for large-scale parallel computation should 
emerge. It is unclear whether such demands could all be met in real 
cortex by ad hoc linking of features in a random field, or would 
necessarily require an anatomical order. This bears on the relevance, if 
any, of why the cortex is columnar in some sites and non-columnar in 
others — a classical anatomical conundrum (Horton and Adams, 
2005). Although anatomically specific, such a system might not be 
completely identified by traditional anatomical methods, as the 
orderliness might lie in the pattern created by very large numbers of 
synapses that cannot be exhaustively tracked by standard means, 
rather than in the positions of cells that may, or may not, show orderly 
arrangement of their cell bodies. 

Here we extend our efforts (Wright and Bourke, 2013; 2016; 
Wright, Bourke and Favorov, 2014) to unify anatomical order and 
neural dynamics. Our group used neural field equations similar to 
Freeman’s equations to explain spatial and frequency properties of 
electro-cortical potentials (summarized in Wright, 2016) and attri-
buted synchrony to dissipative equilibrium in the exchange of electro-
cortical waves. The ubiquity of synchrony led us to consider a possi-
ble role of synchronous oscillation in the embryological development 
of the cortex. Our conviction is that the mechanisms governing the 
regulation of neural growth in the embryo should be sufficient to 
explain the operation of the cortex in the postnatal environment. A 
successful theory of cortical neurogenesis and emergent structure 
ought, therefore, to imply a theory of cortical function, and might also 
go some way to resolve other neurophysiological uncertainties; fre-
quency versus rate coding (Gerstner et al., 1997); the impact of 
dynamic changes in synaptic efficacy (Wu, Wong and Tsodyks, 
2013); the effect of competitive selection of cells by apoptosis 
(Chambers et al., 2004; Elmore, 2007; Ryu et al., 2016) and of com-
petition between synapses (Antunes, Roque and Simoes de Souza, 
2016), as well as the formulation of Hebbian learning rules. 

2. Synchrony Can Orchestrate an Anatomical Order 

2.1. The origin of synchronous oscillation 

Figure 1 highlights the mechanism generating gamma oscillation as 
described by Freeman (1992) — placed within the context of overall 
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cerebral organization. Excitatory neurons and inhibitory neurons are 
closely intertwined in the cerebral cortex, and when sufficiently 
excited by pulses from external sources, their interactive firing 
becomes surging, as excitation and inhibition alternately predominate 
(Douglas and Martin, 1991). Groups of cells pulsing at the gamma 
frequency (about 40 Hz) transmit bursts of pulses to-and-fro to other 
groups via synaptic couplings to the surrounding cells, which, when 
firing at a low background rate, act as a stochastic medium for trans-
mission of waves (Wright and Liley, 1996). As pulses from different 
sources sum at dendritic membranes of each neuron, pulses out of 
synchrony exert little effect, whereas pulses in synchrony summate 
(Chapman, Bourke and Wright, 2002). Thus, the exchange of signals 
between excitatory cells quickly reaches a dynamic equilibrium at 
which the excitatory cells all fire simultaneously, and exchange bursts 
of excitatory pulses. This synchronous oscillation is of greatest ampli-
tude where the cells are strongly and reciprocally coupled. The 
exchange of pulses between excitatory and inhibitory cells also 
reaches an exchange equilibrium, but the opposite effects of the pulses 
exchanged requires them to fire at alternate times (Wright, 2010). The 
graphical representation of zero-lag cross-correlation of excitatory 
pulses, and out-of-phase excitatory/inhibitory cross-correlation, are 
also shown in Figure 1, and the dynamics are described in Appendix 
1. 

If all excitatory cells were strongly coupled at all times, then all the 
cells in the cortex would fire synchronously. This does not occur, 
partly because different subsets of cells receive different inputs, and 
partly because synapses change their efficacy (the strength of current 
connection) continuously. This means there are a very large number of 
ways different subsets of cells can enter synchrony, while other 
subsets remain firing at the low background rate. Which subsets are 
active defines the current, but continuously changing, brain state. 
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Figure 1. At bottom left a system of ascending and descending neural 
pathways, sending signals to and from the cortex is shown. Top, a slice 
through the cortex is shown in microscopic detail, with an excitatory 
pyramidal cell emphasized, and alongside it, an inhibitory cell — the 
excitatory and inhibitory cells being closely entwined. When sufficiently 
excited, excitatory and inhibitory cells begin oscillatory, to-and-fro, 
excitatory–inhibitory firing, at the gamma rhythm frequency, and excitatory 
cells begin to fire synchronously. Inset bottom right are cross-correlograms 
of pulses in a pair of excitatory cells, versus an excitatory and an inhibitory 
cell. The solid line, peaked at zero milliseconds, indicates that excitatory 
cells are firing simultaneously, the dashed line shows that excitatory and 
inhibitory cells fire a quarter-cycle out of phase with each other. 

2.2. Synapses adjust their strengths to maximize synchronous 
amplitude by increasing connection symmetry 

Aspects of Hebb’s (1949) famous rule have been recently unified 
(Izhikevich and Desai, 2003) (see Appendix 2). Synaptic connections 
strengthen if the pre-synaptic cell pulses before the post-synaptic cell 
(long term potentiation — LTP) and is depressed (LTD) if the cells 
fire in the reverse order (Bear and Malenka, 1994). These effects com-
bine as spike-timing dependent plasticity (STDP) (Markram et al., 
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1997). The mathematical form of STDP is compatible with a further 
rule — the Bienenstock-Cooper-Monroe (BCM) rule (Bienenstock, 
Cooper and Monroe, 1982), which describes slower changes in 
synaptic strength. 

The unification of STDP and BCM applies under two provisos. 
Firstly, on very rapid timescales, synapses must change their strength 
pulse-by-pulse, with minimal effect of prior pulses on the change in 
strength, although predominance of LTP over LTD slowly leads to 
increasing synaptic strength, and vice versa. Secondly, when pre- and 
post-synaptic neurons fire with high correlation, then a stable synaptic 
state cannot persist for long, implying that strongly synchronous firing 
of coupled neurons must be self-limiting. Synapses interact directly 
with their neighbours, probably by many different mechanisms, and 
compete for essential metabolic components — calcium ions being 
one component of established importance (e.g. Vernino et al., 1992; 
Antunes, Roque and Simoes de Souza, 2016). Together, these effects 
would force continual switching between different subsets of strongly 
and synchronously pulsing neurons. 

On longer timescales, the BCM rule imposes a refractoriness upon 
the effects of LTP, so the stronger the synapse, the smaller subsequent 
change becomes, while conversely, the weaker the existing 
connection, the more steeply the synapse increases its strength as fresh 
afferent pulses are received — an effect described as ‘floating hook’. 
The ‘floating hook’ effect implies that two excitatory cells bidirection-
ally coupled and exchanging pulses would tend to come into equilib-
rium with each other, with equal firing rates, and equal, symmetric, 
strength of the synapses involved — and, more generally, such 
bidirectional connection symmetry might also be exerted over several 
intermediate synapses. 

2.3. Maximization of synchrony and the development of small-
world connections in columnar and non-columnar cortex 

Embryonic neurons divide rapidly, spreading their long axonal 
connection trees, and generate pulses as they grow (Friauf, McConnell 
and Shatz, 1990; Downes et al., 2012; Shi et al., 2012). A large 
fraction of the dividing cells die (apoptosis) (Elmore, 2007; Ryu et al., 
2016) and, although apoptosis is a complicated process, involving 
suicide signals, we assume that access to and competition for 
resources plays a part in the selection of survivors. Ensembles of cells 
will survive better if the ensemble is connected by axons of minimum 
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length, to establish the necessary connections at lowest metabolic cost, 
so surviving ensembles will form ‘small-world’ systems, and that is 
found experimentally to be the case (Downes et al., 2012). In the 
limit, the ensemble would form an ‘ultra-small-world’ (Cohen and 
Havlin, 2003) — a topology of connections in which distance of 
separation is proportional to the number of synaptic steps between 
neighbouring cells via which any two neurons are interlinked. For this 
to be the case, the average probability of connection between indi-
vidual cells must decline with distance as a power function. 

A complication is introduced by differences in the extension of the 
axonal trees of different types of excitatory neurons. We can consider 
the cells in a given cortical area as composed of a group with longer 
axons (here called alpha cells), and a group with shorter axons (beta 
cells). In different cortical areas the disparity of axonal lengths may 
vary, and, depending on the degree of disparity, different ratios of 
alpha to beta cells must be selected to ensure an equivalent overall 
connection-density versus distance power function. 

It has also been shown experimentally that cells prevented from 
firing in synchrony are prone to apoptosis (Heck et al., 2008). A 
plausible explanation for this is that as they fire in synchrony the 
neurons pump critical metabolites from the extracellular fluid 
collectively, outcompeting cells that fire asynchronously and 
uncooperatively. (The ratio of the pumping power could be as strong 
as N/square-root N, for N neurons in the synchronous and 
asynchronous groups.) So, selection of surviving neurons is toward 
cooperative, synchronous ensembles of cells, joined together in ultra-
small-world configuration, and adjusting their synaptic contacts as 
much as possible towards reciprocal symmetry, so as to maximize 
synchrony. The principle of competition for resources can be assumed 
to operate within the cells as well as between the cells; thus surviving 
cells must find an efficient distribution of resources to their 
developing synaptic connections, such that synchronization is maxi-
mized in the ensemble to which they belong. 

Figure 2 shows the outcomes of the interplay of these factors in 
simulations of the growth of cortical connections, and contrasts the 
outcome of two extremes in the ratio of lengths of beta and alpha 
cells. These simulations took place in three stages. In the first stage, 
the surviving cell bodies were arranged so as to form an ultra-small-
world system of connections. In the second stage, the cells’ positions 
were further arranged under the assumption that the forming synapses 
were adjusting their strengths according to the synaptic learning rules 
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discussed in the prior section, so that the surviving cells were forming 
reciprocally symmetric connections and attempting to compromise 
between both criteria — maximum synchrony and minimal total 
axonal length. In the final stage, which had little effect on the arrange-
ment of the cell bodies themselves, synaptic resources were deployed 
so as to push the theoretical amplitude of total synchrony to a 
maximum. 

 

Figure 2. Simulation of cortical antenatal growth. In the left-hand figures, 
cell bodies of neurons with relatively long axons (alpha cells) are marked in 
black, and those of cells with relatively short axons (beta cells) in grey. In 
the top result a columnar structure emerges, where the cells with long 
axons are both much longer and much fewer in number than in the lower 
result, where short and long axons are more approximate in length, and the 
numbers of each type of cell closer to equality. In the right-hand figures, 
corresponding to the simulation results, the density (as a function of 
distance) of synapses generated by the cells with long axons are shown in 
the black curves, and the synapses generated by the short-axon cells as a 
dashed curve. In the respective cases, the average synaptic density versus 
distance approximates the same power function. The vertical dashed lines 
indicate the crossover distance, X, from the cell bodies beyond which the 
longer-axon alpha cells generate more synapses than do the short-axon 
beta cells. 
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It can be seen that when the long-axon, alpha, cells have much longer 
axons that the short axon, beta, cells, the outcome is a pattern in which 
the cells are arranged in columns — that is, clusters of beta cells 
surrounded by a meshwork of alpha cells. When the axon tree lengths 
are more nearly approximate, no such clear columnar arrangement is 
apparent. 

The reason for these distinct outcomes can be seen in the accom-
panying plots, on the right-hand side of the figure, showing the 
respective distribution and numbers of alpha and beta cells required 
for the power function approximation in each case. Where most of the 
cells are beta cells, maximization of synchrony depends on tight pack-
ing of beta cells, yielding a columnar structure. Conversely, where 
long-axon alphas are present in more nearly equal numbers to the beta 
cells, optimization of the alpha–alpha connections plays a more nearly 
equal role, forcing a non-columnar outcome. 

2.4. Formation of synaptic patch connections, and winding of local 
cell synapses about a singularity 

Following the early embryological development, resulting in deploy-
ment of surviving cells near optimal positions, later synaptic develop-
ment would continue, also under the constraint of limited resources. 
Thus synaptic connections must develop so pulsation exchanges reso-
nate as much as possible — that is, maximize synchrony. Figure 3 
illustrates the geometric effects determining the optimum synaptic 
positions. 

To contribute appropriately to the power function/distance relation-
ship, synapses between alpha cells must be deployed at distances from 
the alpha cell bodies greater than the distances at which alpha cell 
axonal density exceeds that of beta cells. This forces alpha cells to 
form synapses in skipping patches. The alpha network must resonate 
not only within itself, but also with the clusters of beta cells. This has 
the effect of generating an image of the alpha network projected upon 
each cluster of beta cells — a ‘local map’. Each of the beta clusters 
must also interact with its neighbours so that local maps in adjacent 
beta clusters also achieve maximum co-resonance, and this is optimal 
if adjacent local maps are arranged in approximate mirror symmetry. 

Also to increase resonance, the connections within the beta cluster 
must themselves be deployed so that the beta cell connections are as 
dense as possible, while consistent with the reception of a one-to-one 
map of alpha cell inputs. This condition is met when the beta cells’ 
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synapses form into an array somewhat like a Möbius strip. The 
Möbius-like arrangement can occur with the local map arranged with 
either left- or right-hand chirality, which, in turn, facilitates the 
arrangement of adjacent beta clusters in mirror symmetry. 

These arrangements correspond to observed cortical synapses, as is 
next discussed — except for the Möbius configuration, which has thus 
far not been directly observed, although its presence has been inferred. 
Our earlier papers discuss the full range of correspondences between 
theory and experimental data (Wright and Bourke, 2013; 2016; 
Wright, Bourke and Favorov, 2014). 

 

Figure 3. From the top simulation in Figure 2, six alpha cells surrounding a 
zone of beta cells have been picked out each at distances of separation 
from their nearest neighbours roughly the crossover distance, X. The fields 
of optimal synaptic connection of these six alpha cells with beta cells and 
other alpha cells have been emphasized in dark grey, and the alpha cells 
themselves, marked in red, blue, and green, generate optimal connections 
to beta cells within the central zone, coloured red, green, and blue accord-
ing to their origins from diametrically opposite alpha cells. Consequent to 
restriction of synaptic resources, connections have become established 
over only half the potential field, and these are arranged so diametrically 
opposite alpha cells make connections outwards at similar angles from a 
‘singularity’. The inset shows the corresponding form of connections 
among the beta cells within the zone. The beta cells have established 
connections so they form a connected system analogous to a Möbius strip. 
The inset also shows the mirror-image arrangement of connections in an 
adjacent column of beta cells. 
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Figure 4. This image is centred on one of the original six alpha cells in 
Figure 3. The organization of connections shown in the inset of Figure 3 
leads to a distribution of conventionally measured Orientation Preference 
(OP) of the enclosed beta cells, from 0 to 180° over 360° about an OP 
singularity, indicated by continuous colours on the colour spectrum. The 
emergence of OP in adjacent systems of beta cells is shown by arrange-
ment of OP in mirror-image array in adjacent columns. Those alpha cells to 
which the central cell makes strong connection are shown as enlarged 
black-filled circles, and those beta cells with common OP connected to the 
central alpha are marked with black stars. These patterns reproduce the 
anatomical phenomena of patch cell connections, and ‘like to like’ 
connections, respectively. 

2.5. Final configuration in primary visual cortex. 
Patch connections, ‘like to like’ connections, and orientation-
preference maps 

Figure 4 shows the way the formation of synaptic connections 
diagrammed in Figure 3 reproduces established anatomical findings. 
The connections of a single central superficial patch cell (an alpha 
cell, in the simulation convention) is distributed in rings to other patch 
cells at a regular distance of separation (e.g. Gilbert and Wiesel, 1979; 
1989), while not necessarily being connected to all patches in its 
axonal domain. The short-axon local cells are shown tinged with all 
the colours of the rainbow surrounding central pinwheels marked with 
small white circles about which all the colours are focused. These 
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focal points in the primary visual cortex are orientation preference 
‘singularities’ and each colour demarcates response to slowly moving 
bars at a continuum of angles from 0–180 degrees — i.e. the range of 
angles as a bar is rotated to reverse its ends — around 360 degrees at 
the singularity (e.g. Bosking et al., 1997) — reflecting the way the 
‘local map’ of projections from the alpha cells to the folded beta 
cluster are arranged Möbius-fashion. Synaptic connections from the 
central patch cell are made only to local cells of similar orientation 
preference in areas surrounding different singularities, forming ‘like to 
like’ synaptic connections (Gilbert and Wiesel, 1989; Muir et al., 
2011). 

Although these, and other, consistent anatomical features are most 
clearly seen in strongly columnar systems — most typically the pri-
mary visual cortex — there is reason to believe that a very similar 
system of organization may exist in all cortical areas, as next shown. 

2.6. Sparsity of connections permits functional similarity in 
columnar and non-columnar cortex 

Figure 5 shows a blown-up segment of the network of alpha cells from 
the non-columnar simulation outcome in Figure 2. Inset is shown a 
segment from the columnar simulation outcome. Both segments have 
been scaled so that the distance X — the crossover of density for beta 
versus alpha axonal trees, equal to the distance of separation of alpha 
(patch cell) clusters — is equal in the two cases. A subset of alpha 
cells have been connected with emphasized black lines each distance 
X long, and it can be seen that the same type of intermingled 
connection systems can be present in both, the difference being only 
in the magnitude of X, and the degree to which patch and local cells 
systems are clearly defined. This is consistent with anatomical 
findings in non-columnar cortex, which nonetheless exhibit patches, 
and occasional areas of local cell organization analogous to columnar 
cortex (Girman, Sauve and Lund, 1999; van Hooser et al., 2006; Ko et 
al., 2011; Garrett et al., 2014). Connections between neurons in the 
cerebral cortex are very sparse — i.e. any two randomly chosen cells 
have low probability of connection, so many similar connection 
systems may be intertwined. This generalization of columnar structure 
permits us to extend our account from the primary visual cortex to the 
cortex at large. 
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Figure 5. A section of the bottom simulation result from Figure 2, with the 
detail of the top simulation of Figure 2 used in Figure 3 inserted as an 
inset. The crossover distance, X, is normalized between the section and 
the inset. Alpha cell connections approximately distance X from near 
neighbours are then picked out by emphasis in black, in both the section 
and the inset. 

3. Within the Anatomical Order, Synchrony 
Can Perform Cognitive Operations 

3.1. A time-varying stimulus created by a moving object becomes 
represented by a set of simultaneously activated neurons 

As well as explaining anatomical findings, the model of cortical 
growth presented above has succeeded in explaining the way the 
orientation preference of visual cortex neurons changes with the 
speed, angle of orientation relative to direction of motion, and length 
of stimulus objects (Basole, White and Fitzpatrick, 2003) — findings 
unexplained any other way except by matching to Fourier properties 
of the stimuli (Issa, Rosenberg and Husson, 2008); an explanation that 
is an equivalent solution (see Appendix 3). In turn, this phenomenon 
enables us now to explain how, after birth, the antenatal pattern of 
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synaptic development can be modified in response to external sensory 
input in an orderly manner. Figure 6 shows how the image of a line 
projected to the visual cortex will be projected by the alpha cell 
(superficial patch) network to the ‘local maps’ in a representative set 
of clusters of beta cells, whether columnar or non-columnar. Each 
local map receives the image of the moving line with different time-
lags of conduction for each position on the line, and for each local 
map. The set of inputs to the local maps are thus a sample of the line’s 
movement through space and time. If a substantial number of the 
neurons in the local maps are activated above threshold, they can then 
enter into synchronous oscillation with each other, and the synchro-
nous firing of the cells at any moment represent the moving object not 
as a static image at that moment, but as a sample of the line in motion, 
over some short epoch. (See Appendix 3.) 

Although the duration of the synchronous firing is self-limiting, as 
earlier discussed, repeated short bursts of firing would result in perma-
nent synaptic consolidation. Consequently, activation of the group of 
cells by other inputs would generate the same effect as the original 
sensory image. However, if long-term consolidation of synapses is not 
maintained, the connections between the activated cells will revert to 
their embryological pattern, and the input will be ‘forgotten’. Also, 
similar stimuli moving through similar parts of the sensory field will 
generate similar, partially overlapping, synchronous sets. Synaptic 
bridges, if later developed between initially distinct connected sets, 
would create new object representations — the new representation 
having some characteristics of each initial object. 

In the examples that follow emphasis is placed upon vision, but it 
should be noted that inputs in all sensory modalities can be similarly 
characterized as spatio-temporal sequences, whatever the way the pri-
mary stimulus has been modified by the input pathways. As pre-
viously noted, although orderly arrangements in macrocolumns like 
those of the primary visual cortex are used for illustration, similar 
mechanisms are applicable in all cortical areas. 
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Figure 6. Mapping of a moving object onto a set of synchronous neurons. 
An object in the visual field is projected to the cortical surface, and is here 
represented by the black line. Lateral transmission from the receptive fields 
of input takes place via the patch cell (alpha) system, to many of the 
macrocolumnar local maps, composed of short-axon (beta) cells. The 
Möbius strip-like organization of the local maps is indicated as formations 
of synaptic connections analogous to a clam-shell. The dashed lines on 
each clam-shell indicate mapping of the horizontal axis in the larger field, in 
each map, with dashed arrows indicating the chirality of the map. The 
projection of the line to each macrocolumn winds onto the 0–2 π, or 2–4 π 
‘limbs’ (or ‘skeins’) of each local map. Projection from input points on the 
cortex to corresponding points on each local map take place with different 
conduction delays, marked t1–t3, and t4–t6. The simultaneous activation of a 
set of cells in the local maps, and their entry into synchronous oscillation, 
represents a space-time sampling of a moving object over a short epoch. 

Figure 7 shows the progress of the inputs to a single idealized macro-
column in the primary visual cortex, generated by the same object 
travelling at a variety of different speeds. The laterally travelling 
waves of input signals do not raise the local cells above threshold for 
firing until the moving stimulus directly stimulates the macrocolumn 
over the direct pathway from the optic nerve and lateral geniculate 
body. Then a characteristic set of the cells close to threshold are 
excited beyond their threshold. 
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Figure 7. In accord with the mechanism diagrammed in Figure 6, the 
moving stimulus generates subthreshold activation of cells in each macro-
column in a pattern that is updated as the progress of the visual stimulus 
continues. When the particular macrocolumn receives direct input to its 
classic receptive field (cRF) the cells are triggered above threshold, and 
can enter synchrony. This effect is shown for a sequence, arranged left to 
right, of epochs in a single macrocolumn, as the visual stimulus (black line) 
moves left to right. Top to bottom the sequence is shown for stimulus 
inputs moving at half the speed of wave transmission through the patch 
system, at equal speed of stimulus and waves, and where stimulus speed 
is 50% greater than wave speed. The right-hand epoch shows, in white 
highlighting, the approximate area within which cells are triggered above 
threshold in each case. 

3.2. Each object creates a unique pattern 

Figure 8 makes more explicit the process of generation of synchro-
nous fields by a moving stimulus, in a set of idealized macrocolumns. 
A continuous rolling wave of subthreshold excitation reaches local 
cells in each macrocolumn as the movement of the visual stimulus 
continues. The pattern of cells entering synchrony is unique for given 
stimulus shape and velocity, and because of the network sparsity, 
many similar but distinct object representations can be anatomically 
intermingled. 
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Figure 8. A complex of adjacent macrocolumns is shown, each map 
showing with its activation pattern in response to moving line visual inputs, 
aligned at 90, 45, or –45 degrees relative to the horizontal axis of the field, 
and at stimulus speed/wave speed ratios 0.5, 1.0, and 1.5. For each con-
dition the field of synchronously activated cells is unique. 

3.3. Separate cortical areas can interact via synchrony, to manipu-
late object representations and perform computations 

Figure 9 indicates that interareal cortico-cortical connections can feed 
forward and feed backward patterns of activity between higher and 
lower areas in the cortical hierarchy. The signals input from the lower 
area would propagate laterally in the higher area according to the 
same rules as in the lower, generating a similar anatomical order to 
that of the lower, and also send return signals to the lower cortical 
area. According to whether the exchanged cortico-cortical signals 
terminate on excitatory or inhibitory cells, and which synapses are 
currently successfully competing for critical substrates, synchronous 
patterns can either mutually reinforce or suppress each other, as 
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shown by the in-phase and out-of-phase wave interactions at the 
bottom of Figure 9, and thus perform computational switching, 
operating as logic gates of any type. Iterative interactions among 
many cortical areas would be possible by similar means. As signals 
move up the hierarchy of cortical areas, they would contain 
information in increasingly abstract form, from all modalities, but 
always based upon the same representation of spatio-temporal moving 
patterns at the lower level, converted to synchronous sets at the higher 
level, and eventually impacting on the motor cortex and projections to 
subcortical systems. Conversely, as signals move down the hierarchy, 
higher-order motor control could be exerted to filter the incoming 
sensory flow. 

 

Figure 9. Systems of adjacent macrocolumns, similar to those in Figure 8, 
are shown top left and right, each of which represents macrocolumns in 
separate cortical areas, interacting with each other via cortico-cortical 
fibres, as indicated by the black and white arrows linking analogous points. 
The arrows and the black and white shading indicate that higher and lower 
cortical areas can act either to reciprocally excite each other into joint 
synchrony, or to block synchronous activity and thus can filter and modify 
each other’s patterns of activity by switch-like means. The bottom inset 
shows the mechanism of in-phase versus anti-phase interaction. The left 
frame shows concurrent activation of adjacent excitatory cells, generating 
synchrony, the right frame shows concurrent activation of an excitatory and 
an inhibitory cell, causing anti-phase cancellation of synchrony. 
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The dynamic attractors of the system are combinations of neurons 
firing in synchrony, each associated with a transient steady-state of 
synaptic activity. This requires neither exclusive pulse-frequency nor 
pulse-rate coding, as the most important timescale would be set by 
two-way synaptic adjustments in response to the pulses, and the pulses 
to the available synaptic resources, rather than explicit information 
processing by the pulses alone. 

Synaptic competition for critical resources in fast synapses implies 
their metabolic entanglement, with some analogy to quantum 
entanglement, and thus, perhaps, some of the properties sought in 
quantum computing (Muthukrishnan, 1999). If supply problems limit 
critical resources to supporting 50% of fast synapses at any time the 
channel capacity (Shannon entropy) of synaptic states, and thus of 
synchronous states, would reach an immense maximum. 

With this distributed and massively parallel system, reinforcement 
influences consolidating synaptic changes can be diffuse, if appro-
priately timed. Stimulation of transhypothalamic (ICSS) neurons 
(Olds and Milner, 1954) causes consolidation of immediately prior 
action sequences by a widespread diffuse action upon the cortex 
(Wright, 1973). Thus, interaction of the cortex with innately wired 
subcortical systems, providing supervision of learning in early post-
natal life, would later lead to cooperative cortical control of the lower 
systems. 

4. Conclusion 

The developmental synaptic scaffold that we propose has candidate 
properties as a basis for an anatomy of cognition. Representations of 
different objects, distinct from each other yet similar and interwoven 
for closely related perceptual wholes, would arise from repeated 
episodes of synchrony, and would be associated by cross-links to form 
new object representations, while deletion of errors and ‘forgetting’ 
would occur by relaxation to the antenatal configuration without 
disruption of the whole. Of course, we have not established that the 
system’s properties are uniquely necessary for cognitive function, but 
they do offer a natural pathway to self-organization and efficient 
operation of the cortex. 

The existence of a general cortical organization, underlying the 
widely disparate columnar and non-columnar variations of the cortex 
from region to region and between species, does not imply that the 
rich systematic variation of structure throughout the cortex (Glasser et 
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al., 2016) is without functional significance. It does suggest, however, 
that at least a part of the basis of this variation may lie in variation of 
axonal lengths of intracortical axons in each zone of parcellation — 
and perhaps differences in the correlation length of signals processed 
in different areas. The proposal is not only compatible with localiza-
tion of function to different cortical areas, but requires this. 

Several independently derived theoretical ideas are unified in this 
proposal — viz. 

• Synchrony is the stable state of cortical activity and requires 
symmetric connectivity between excitatory neurons. 

• Fast-dynamic modification of excitatory synapses leads to overall 
symmetric connectivity, and local periods of burst firing in syn-
chrony terminate automatically. 

• Synaptic competition operating on the fast-dynamics of synapses 
permits a multitude of separate synchronous states. 

• The metabolic entanglement of fast synapses makes possible very 
large-scale parallel computation. 

• Consistent with the above, simulations can account for the 
anatomical structure of both columnar and non-columnar cortex. 

Although the connections that emerge in our simulations match actual 
anatomical descriptions well, they predict a striking feature that has 
not been directly described — the Möbius strip-like winding of 
synaptic linkages within macrocolumns and their equivalents in non-
columnar cortex. However, the demonstration of synaptic connections 
in ‘lego sets’ (Song et al., 2005; Kalisman, Silberberg and Markram, 
2005; Perin, Berger and Markram, 2011) is consistent with our theory. 
Units of lego sets appear to be linkage clusters of excitatory cortical 
cells, scattered over a range of up to several hundred microns — about 
the size of a macrocolumn. The neurons are strongly, and often 
reciprocally, connected by few synapses of the many possible 
connections their axons could have made, and are not, in themselves, 
small-world ensembles. Bridges between such sets could form a 
Möbius-like system, and have the characteristics of linkages, learned 
via synchrony, making up the representation of a stimulus or per-
ceptual object. This suggests a test of theory by specification of the 
feature responses of a lego set, and the reconstruction from this of a 
stimulus object. Conversely, the embryological development of lego 
sets on a random basis would give rise to a postnatal cortex already 
primed to perceive some ensemble of elementary perceptual objects. 
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Much remains unspecified. We have not attempted to introduce 
details of biochemistry into our account, except in the most minimal 
form. Field equations specifying the interaction and competition of 
synapses are not even attempted. The role of subcortical systems in 
the selection of particular learning has been considered only by 
reference to the spirit of the work of MacLean (1973). However, the 
proposal appears consistent with the findings and scheme of cerebral 
organization described by Mannino and Bressler in this issue, and, 
incidentally, Tsuda’s concept of chaotic itineracy (also in this issue) 
might be applicable to transitions between the synchronous attractors 
of the present account. 

Finally, on the great question of the nature of consciousness, as 
opposed to the nature of brain function, we remain agnostic. The 
implied close correspondence of the synchronous field to the repre-
sentation of whole moving sensory objects, and their subsequent 
intermingling and generation of bottom-up and top-down information 
flows, ultimately generating motor outputs, represents the brain as an 
adaptive machine. The world within is constructed of learned relation-
ships of concrete objects and their abstractions and associations, con-
strained to optimize organism survival in an environment (physical 
and conceptual) of ever increasing complexity. Since, in this formula-
tion, synchronous attractors are minimum free energy states, the con-
cept is aligned with the minimum free energy principle proposed, on 
more general grounds, by Friston and colleagues (Friston, 2010). 
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Appendix 1. 
Synchrony and equilibria in the neural field 

Autoregression analysis shows electro-cortical waves resemble a near-
equilibrium thermodynamic process (Wright et al., 1990), frequency/ 
wavenumber analysis reveals their widespread synchrony (Wright and 
Liley, 1995), and coherence analysis indicates they are long wave-
length damped travelling waves, generated from multiple sources on 
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the cortical surface (Wright and Sergejew, 1991). Simulations indicate 
that the synchrony arises from symmetrical collisions with super-
position of even, and dissipation of odd, components of the travelling 
waves (Chapman et al., 2002). The limited large-scale signal com-
plexity would preclude high levels of information transfer via the 
waves — unless there are a multitude of separate states, each with 
similar gross characteristics, poorly distinguished in the surface 
recordings. Synaptic competition would permit many such states, as 
partitioned equilibria, with each equilibrium requiring a different 
symmetry of synaptic connection. 

Pulse dynamics 

Pulses flow along axons until they reach pre-synapses 

φp(q, t) ← gQp(r, t – x / v)              (1.1) 

Subscript p  e,i  refers to excitatory or inhibitory neurons, where r 

and q are cortical positions occupied by single neurons. 

x = |q – r| 

φp(q, t) is the flux of pulses reaching pre-synapses at the neuron at q, 
from the neuron at r. 
g is the slowly varying (Hebbian) synaptic gain between the neuron at 
q, from the neuron at r. 
Qp(q,r, t) are the pulse emission rates at q,r. ν is axonal conduction 
speed. 

The pre-synaptic pulses produce depolarization of dendrites 

Vp(q, t) ← Σεpφp(q, t)               (1.2) 

Vp(q, t) are dendritic potentials generated at q. 
εp is the efficacy of synaptic connection. 

The dendritic depolarizations are translated back into pulses 

Qp(q, t) ← ΘVp(q, t)                (1.3) 

Θ is a Heaviside step function for the threshold for conversion of 
dendritic potentials into action potentials. 
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Synaptic competition 

The efficacy of the synapses is continually modified by the interaction 
of pulses with the available resource reservoir, and the competition 
between synapses for those resources 

E()   j j B jk jk j  k
j,k1

j.kN


           (1.4) 

E()  is a measure of energy of the total synaptic state. 

j,k numbers the connections qr. 
  is an average of synaptic flux within a relevant time period of 

synaptic adaptation. 
N is the number of connections. 
Bjk is the correlation of synaptic flux in connections j and k. 
εj is the instantaneous synaptic efficacy. 
Minima of eqn. (1.4) define combined pulse and synaptic steady 
states. On timescales shorter than the period of oscillation, εj,  j,k, Bjk 

must be represented by complex numbers. Nearby synapses are 
metabolically entangled, and convergence to a minimum would be 
rapid. This provides some analogy to quantum computing. On long 
timescales, εj,  j,k, Bjk can be represented by real numbers, with 

analogy to Hebbian consolidation and Hopfield networks. 

Requirement of connection symmetry for synchronous equilibria 

Time-stationary equilibrium, either in oscillation or at a uniform low 
firing rate, requires the product of synaptic connection strengths and 
synaptic efficacies to be symmetrically equal between any two cells, 
and the two cells to be firing at similar rates, so that 

φe(q, t) = φe(r, t)                 (1.5) 
i.e. φe(q, t) – φe(r, t) = 0 

That is, at stable oscillating equilibrium, excitatory cells fire in phase. 
The free energy of the excitatory cell neural field is at a minimum and 
there are no net travelling waves, whereas transitions between these 
steady states are associated with travelling waves. Where competition 
enables only about half the synapses to operate at maximum 
efficiency, the number of possible synchronous equilibria is 
necessarily very large, and the synchronous sets distinguishable, yet, 
within each equilibrium, thermal approximations remain applicable. 



 

 DYNAMICS  &  THE  ANATOMY  OF  COGNITION 117 

 

Also at equilibrium 

φe(q, t) = –φi(r, t)                 (1.6) 

i.e. φe(q, t) + φi(r, t) has a constant value (equal to twice the mean 
synaptic pulse rate) so inhibitory and excitatory cells fire with a ninety 
degree phase difference. 

Appendix 2. 
Synaptic learning rules and simulations 

of cortical development 

Unity of synaptic learning rules and emergence of synaptic 
symmetry (after Izhikevich and Desai, 2003) 

Spike-timing dependent plasticity (STDP) (Markram et al., 1997) 
applies to synaptic modification in the low firing rate regime, when 
there is not significant ongoing correlation between pre- and post-
synaptic pulse rates, and is given by 

C(e )  e (
A

 
1 e


A

 
1  e

)              (2.1) 

C(φe) is the change in synaptic strength per pre-synaptic pulse, at a 
given post-synaptic pulse rate, φe, and A+, A–, τ+, and τ– are parameters 
defining the gain and time constants of synaptic change. 

When this rule is applied with appropriate parameter values and under 
the assumption that only ‘nearest neighbour’ pulses need be con-
sidered (i.e. that the effect of prior pulses is forgotten by the synapse 
after each post-synaptic pulse) it has the same mathematical form as 
the Beinenstock-Cooper-Monroe (BCM) rule, over short epochs. The 
complete BCM rule also includes a slower developing property — the 
‘floating hook’ — that describes the way C(φe) declines with 
increasing pre- and post-synaptic pulse rates. This means that the 
exchange of pulses between neurons tends to bring the synaptic gain 
of their connections (whether directly reciprocal or in the aggregate 
over indirect connections) and the pulse rates of the cells toward 
equality. 

During synchronous oscillation, eqn. (2.1) becomes 

C( e )  e(A  
A

 
1  e

)ac0             (2.2) 
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Where ac0 is a time correlation function for pre- and post-synaptic 

pulses. 

Since the exchange of synchronous pulses between neurons is highly 

correlated, ac0 becomes the dominant term. Stability analysis shows 

the stable point is now accompanied by a high frequency unstable 
point, leading in time to a saddle node bifurcation that prevents 
synaptic stability, interfering with the exchange of synchronous 
pulses, and limiting the period of synchrony. 

Basis of cortical growth simulations (after Wright and Bourke, 
2016) 

The simulations considered two populations of cells — alpha cells 
(that will become superficial patch cells) and beta cells (that will 
become local short-axon cells). 

Ratio of cell types 

Where Nβ and Nα are the fractions of the cells that are beta or alpha, 
and λβ and λα are the respective inverse length constants of their 
axonal trees, and their average of axonal tree density is an ‘ultra small 
world’ descending power function with distance, then for given λα and 
λβ, Nα and Nβ can be found by minimizing 

[(x 
1/ 2

)2  (N e
 x Ne

 x )]2dx
x0

x


       (2.3) 

Optimum arrangement of the cell bodies must then be determined. 

First stage — selection of cell positions with ultra-small-world 
axonal length 

Up to a distance X from the cell body, beta cells have greater axonal 
density than alpha cells, and beyond distance X alpha cell axonal trees 
are denser. (See Figure 2.) Consequently, simulation of selection of 
cell positions during the earliest stages of embryogenesis computed an 
equilibrium of forces arrived at by alpha cells repelling cells at less 
than distance X and attracting cells at greater than distance X, while 
the reverse was the case for beta cells. 
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Second stage — maximization of synchrony modifies final 
selections of cell positions 

In the next stage, a similar equilibrium of forces algorithm was 
applied, but this time under the assumption that all connections were 
approaching bilateral symmetry as synapses developed to equilibrium, 
maximizing synchrony. This skews the optimum cell positions into a 
columnar structure. Differing ratios in the axonal lengths imply 
different compromises between maximization of synchrony and ultra-
small-world axonal lengths, and thus variation in the degree of 
columnar organization in cortical areas and species. 

Appendix 3. 
Representation of a moving object in a synchronous set 

Spatio-temporal representation 

Connections between the patch system and the many macrocolumnar 
local maps can be represented as projection from a single complex 
plane, P, to each of a set of complex planes, {p}, tiling the larger 
plane 

P(Px,Py) → {p(px,py,pz)}               (3.1) 

where {p} are constructed from Möbius strip-like local synaptic 
connections, with each map having a reference zero orientation, φ, to 
the X-axis of the global field, and each centred on a singularity at a 
position p0 so that where p p0  p  are distances from the singu-

larity and ϑ are angles from the reference zero angle, with chirality 
indicated ±, then 

px = |p|cos(±ϑ + φ) 

py = |p|sin(±ϑ + φ) 

pz 
1 if 0  (  )  2

1 if 2  (  )  4
 

the sign of pz indicating whether p is located in the first or second 
‘limb’, or ‘skein’, of the Möbius connections. 

Thus, the image of a moving object, O, received over sensory path-
ways and relayed by lateral patch connections to any one local map 
can be represented by 
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O(Px ,Py ,t 
P p


)O( px , py , pz ,t)

           (3.2) 

where υ is the electro-cortical wave velocity. 

Thus {O(px,py,pz,t)} represent a spatial and temporal sampling of the 
moving image over some short epoch, with distance from the singu-
larity reflecting time-lag and global distance from the local map. 
The synchronous set so generated is provided with information about 
the instantaneous velocities of the moving image as well as position at 
different lags. 

Spatial and temporal frequency representation 

An equivalent Fourier representation, applicable to the concept of 
‘feature tuning’, is obtained by choosing axes X,Y so that the moving 
image will cross a specific macrocolumn/local map travelling at a 
velocity Vx toward that map, and Vy orthogonal to that map. Then 
wavenumbers Kx,Ky in the image are transformed to preferred-
response wavenumbers kx,ky in the local map, consequent to Doppler 
effect and the orientation of the local map. 

kx Kx



 Vx

cos( )
              (3.3) 

ky Ky



 Vy

sin(  )

 

The pulses of waves arrive with frequencies of modulation, ω(K), the 
temporal-frequency-preference characteristic of each wavenumber of 
the moving image and the object velocity 

(K)  Vx Kx
2 Ky

2

                (3.4) 


