
3D Rendering of the Quaternion Mandelbrot Set with
Memory

Ricardo Fariello1, Paul Bourke2, and Gabriel V. S. Abreu1

1Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil
2The University of Western Australia, Perth, Australia

February 24, 2024

Abstract

In this paper, we explore the quaternion equivalent of the Mandelbrot set equipped
with memory and apply various visualization techniques to the resulting 4 dimensional
geometry. Three memory functions have been considered, two that apply a weighted
sum to only the previous two terms and one that performs a weighted sum of all
previous terms of the series. The visualization includes one or two cutting planes for
dimensional reduction to either 3 or 2 dimensions respectively, as well as employing
an intersection with a half space to trim the 3D solids in order to reveal the interiors.
Using various metrics, we quantify the effect of each memory function on the structure
of the quaternion Mandelbrot set.
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1 Introduction

For the last 40 years, the Mandelbrot set has been employed as a means of illuminating
chaos. The onset to the chaos takes place via the infinity of Myrberg–Feigenbaum points
[25]. For the quadratic polynomial f(z) = z2 + c, the complex Mandelbrot set, MC-set,
is defined as the set of all parameters c ∈ C for which the orbit of the origin under f(z)
remains bounded:

MC-set =
{
c ∈ C | f [k](0) ↛ ∞ as k → ∞

}
=

{
c ∈ C | c, c2 + c, (c2 + c)2 + c, . . . ↛ ∞ as k → ∞

}
(1)

In order to compute a trustworthy picture of the popular Mandelbrot set in the plane c, one
would need to assess carefully how inefficiencies arise in the algorithm [28].

The standard notion of Mandelbrot set from Eq. (1) has a similar construct when trans-
ferred to a quaternionic context:

MH-set =
{
q ∈ H | f [k](0) ↛ ∞ as k → ∞

}
(2)
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but now f [k](0) is the kth iterate of the quaternion polynomial f(Q) = Q2 + q. Our working
definition (Eq. (2)) follows, for example, from Refs. [8, 13, 14, 22, 26], which are based upon
earlier proposed approaches by Pickover [27], Norton [23, 24] — who pioneered investigations
into extending fractals to quaternions, and by Holbrook [16, 17].

Numerous alternatives to the Mandelbrot set [1, 18, 19, 29, 33] have been developed.
They are aimed at the modification of the conventional iterative process to form new patterns
through combinations of different parameters. Such patterns can be used for applications
in physics. For example, [7] indicated that certain classical particle dynamics possess the
complex logistic map as a stroboscopic mapping. Consequently, the Mandelbrot set of the
complex logistic map has a solid physical meaning.

When quaternions are utilized, interesting variations in the Mandelbrot set emerge, for
example, through the embedding of a memory effect [6] or of a noise source [31]. However,
the potential of the discussion of the use of memory has been limited by the prevalence of
only trivial planar cross-sections for the quaternion parameter q. Taking into account the
4D nature of the quaternion numbers, it is possible to go beyond such a 2D projection and
to generate more representational 3D structures.

In discrete-time maps z 7→ f(z), memory effects can be implemented from two perspec-
tives, delay and embedded. Both of these can be allocated to all (full) or some (partial) of
the state variables. Regarding the MC-set, the use of the embedded memory is the subject
of two papers, one concerned with the partial scheme [4] and the other with the full scheme
[3]. Another paper [5] is focused on the delay memory in connection with the full scheme.
Regarding the MH-set, there is only one paper [6] in which the author has examined both
types of memory using the full scheme. These works have considered a number of postulated
forms of memory, including short-term and long-term. They were introduced in [12] for
general nonlinear discrete-time maps. Additionally, metrics (area and center of mass) were
considered as a potential tool for assessing the impacts of memory on the MC-set [3, 4, 5]
and on the MH-set [6].

In light of the above, in this paper we break new ground by addressing the issue of
rendering and visualizing 3D projections of the MH-set in the presence of memory via the
embedded map z 7→ f(m̄) (being m̄ an average of past states). This paper is structured as
follows. First, in Sec. 2, we review the constructs of memory that guide our work and use
them to calculate metrics such as volume and center of mass, which will be needed in the
sequel. In Sec. 3, we offer an outline of how the 3D solids for the MH-set with memory can
be assembled and visualized. Illustrative examples are presented in Sec. 4. Lastly, we give
some concluding remarks and propose some future work in Sec. 5.

2 Preliminaries

We denote by H Hamilton’s quaternions, that is, the set {q0 + q1i+ q2j+ q3k, qm ∈ R} with
i2 = j2 = k2 = ijk = −1. We start by considering the quaternion series

Q0, Q1 = f(Q0), Q2 = f(Q1), . . . , Qk = f(Qk−1)

The next term of the series is

Qk+1 = f(m̄(Q1, Q2, . . . , Qk))
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where the memory function m̄(Q1, Q2, . . . , Qk) is a weighted sum of the previous k states.
In this particular implementation, memory is called embedded memory.

We choose the following cases for m̄k = m̄(Q1, Q2, . . . , Qk):

• Case 1: m̄k = Qk

• Case 2: m̄k = (1− σ)Qk + σQk−1

• Case 3: m̄k =
Qk + σQk−1

1 + σ

• Case 4: m̄k =
Qk +

∑k−1
i=1 σ

k−iQi

1 +
∑k−1

i=1 σ
k−i

The number σ in the above is a real number between 0 and 1, inclusive.
Case 1 corresponds to the memoryless dynamics, while Cases 2 and 3 correspond to

short-term memory in which the weighted sum of the previous two terms are applied. When
σ = 0, Cases 2, 3 and 4 all revert to Case 1. In Case 2, if σ = 1/2, then the last two terms
of the series are equally averaged, and similarly for Case 3 when σ = 1. In general, for some
given σ ≤ 1/2, Case 2 becomes Case 3 if we remap σ to σ/(1 + σ). As such, Case 2 exhibits
a wider range of dynamics than that of Case 3.

Finally, Case 4 corresponds to a long-term memory in which all past states are considered
to determine the next state, and each contributes an inversely decreasing weight. For σ = 1,
this memory is impartial, that is, it is just the average of all past terms in the series. One
might note that all three of these types of memories are applicable for k > 1.

As stated in the introduction [see Eq. (2)], the MH-set can be generated in quaternion
space as

Qk+1 = f(Qk) = Q2
k + q (3)

with quaternions Q = x+yi+zj+wk and q = a+bi+cj+dk, and seed Q0 = 0+0i+0j+0k. In
terms of real variables x, y, z and w, and constants a, b, c and d, Eq. (3) can be transformed
into the form of four real equations:

xk+1 = x2
k − y2k − z2k − w2

k + a

yk+1 = 2xkyk + b

zk+1 = 2xkzk + c

wk+1 = 2xkwk + d

We use these equations to allow the embedding of memory into the MH-set. In particular,
we are interested in the effects that exposure to memory has on the dynamics of the four
variables. Such effects can be accounted for by means of the set of equations:

xk+1 = x̄2
k − ȳ2k − z̄2k − w̄2

k + a

yk+1 = 2x̄kȳk + b

zk+1 = 2x̄kz̄k + c

wk+1 = 2x̄kw̄k + d (4)

3



with the bar denoting averaging over past states of a single variable. Thus, for Case 2, for
example, the barred variable x̄k in Eq. (4) is given by x̄k = (1−σ)xk+σxk−1, with analogous
expressions for the other three variables (y, z and w). We refer to this approach as the full
allocation method. More on this and additional approaches to the formation of models of
discrete systems with memory can be found in [2].

The 4D volume of the interior of the set can be estimated by gridding the enclosing
region into equal size tesseracts and evaluating the behaviour of the quaternion series at
the center of each. The total count of tesseracts inside the set multiplied by the volume of
a single tesseract gives an estimate of the total 4D volume. It’s an estimate because, due
to computational limitations, the practical size of the tesseracts are limited, with the true
volume being the limit as the size of the sampled tesseract volumes tend to 0.

Figure 1 shows the 4D volume for the three Cases 2, 3 and 4 as σ is varied between 0 and
1. The enclosing range has been chosen to be −5 to 5 in all 4 dimensions, each centered at
the origin. This was predetermined to enclose the set in all cases, except for σ > 0.4 in Case
4. The samples are taken on a regular grid every 0.05 units in all dimensions. Case 1 has
no memory and no σ-dependence; the constant volume is estimated at 1.155. Cases 2 and
3 have clear maxima within the σ-range. The maximum for Case 2 occurs experimentally
at σ∗ = 0.36, whereas the maximum for Case 3 occurs experimentally at 0.565, which is in
line with the expected theoretical value of σ∗/(1− σ∗). The volume for Case 4 continues to
increase monotonically for larger σ than shown, as the set continues to grow.

Figure 2 shows the results of computing the center of mass of the x component of the
set as a function of σ. The center of mass of the other three components (y, z and w) are
zero. This is computed in a similar fashion to the volume, except now each 4D point on a
regular grid in the set is summed and normalised by the number of sample points, that is,
the center of mass of a uniform density material. As expected, there is no dependence on σ
for Case 1. Cases 2 and 3 shift along the negative x axis to a maximum of 0.38 and 0.58,
respectively, before shifting back towards the positive x axis. In Case 4, the center of mass of
the x component continues to shift along the negative x axis. Knowing the volume, bounds
and center of mass assists in determining the center and range of the set for sampling in the
visualization discussed in the next section.

3 Recipe for the 3D solids

The visualization of the quaternion fractals involves investigating the behaviour of the series
in the same way as the traditional Mandelbrot image is generated, except here positions
within a bounded region in 4 dimensional space are explored rather than on a 2D plane. The
challenge is often how to render the resulting volumetric data. One approach is to create
isosurfaces [23, 24] which has the advantage of being able to be viewed and rendered in
almost any 3D software. The problem with this approach is the high mesh density required
to represent the fractal detail, and that one has to choose a single isosurface thus discarding
the other escape time information. Another approach is to develop a ray-tracing solution
specific to the problem at hand [15, 30]. Here, rendering techniques have been adopted from
volumetric data visualization in the sciences, namely ray casting volume rendering widely
used for 3D volumetric datasets in medicine [32] (e.g., MRI scans), materials science [11] (e.g.,
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Micro-CT) and geology [21]. In this paper the Drishti software [20] was chosen because it
utilizes the GPU for interactive performance and its shading model includes consideration
of the local gradient, resulting in more informative and compelling visualizations [9].

Volume visualization typically requires that a scalar quantity is assigned to every 3D
pixel (voxel), a regular discrete sampling of a rectangularly bounded region of 3D space. In
order to apply this to the quaternion fractals we need to reduce the dimensionality by one.
This is achieved by slicing the 4D volume in one dimension. In the examples here, the slice
plane is achieved by setting d to 0.5. The volumetric data is therefore created by evaluating
the quaternion series at each voxel location, and the scalar stored at each voxel is the number
of terms before the series escapes to infinity (outside the set) or the maximum length the
series can have in which cases the voxel is assigned to be within the set. In order to reduce
the sampling effects that can arise from any discrete sampling, multiple samples are taken
on a 3× 3× 3 subsampling of each voxel and the results are averaged. This is known in the
computer graphics industry as standard supersampling antialiasing. The volume rendering
process involves mapping the scalar at each voxel to a color and opacity. Rays are then cast
from a virtual camera position and the way those rays interact with the color and opacity
of the voxels forms the rendered image. For example, in the figures here the voxels within
the set are made totally opaque. The faster the voxels escape, the more transparent they
are made.

In addition to the challenges of visualizing 4D solids, there are also computational chal-
lenges. This is particularly so for Case 4 where the sum occurs over the entire length of the
series rather than just the previous two terms. The computation time for the various metrics
performed in 4D increases as the 4th power of the per dimension sampling resolution. The
generation of the 3D solids rises as the 3rd power of the product of the per dimension resolu-
tion and the degree of antialiasing. It should be noted, though, that the various calculations
performed per sample are independent of all other samples and thus this is a trivially parallel
process. All the data used in the volume visualizations as well as the various metrics were
calculated using software written in C/C++. The implementation utilized threads where each
thread was assigned a 2D plane. This provided a sufficient processing quantum and achieved
a level of load balancing. As such, the performance improvement over a single thread was
linear with the number of real cores available.

4 Graphical Examples

The 3D solids for Cases 2, 3 and 4 are shown, respectively, in Figs. 3, 4, and 5 for a selection
of six values of σ (0, 0.2, 0.4, 0.6, 0.8 and 1). The center position and bounds for a and b
are shown, the bounds for c are the same as for b, and d is a fixed slicing plane at 0.5. In
all cases, the series is evaluated for at most 255 terms, chosen as such because the volume
visualization software only supports single byte scalar values at each voxel. The volumes in
all cases are generated at 512× 512× 512 voxels, a tradeoff between computation time and
the resolution that can be represented in the paper figures.

From Fig. 3, as expected, the set undergoes one round of notable changes when under
short-term memory load, resulting in two distinct phases. The first phase, up to σ = 0.36,
is characterized by a shift of the center of mass to the left accompanied by a dilation of the
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volume; from then onwards, the set enters a second phase in which it is brought back to
the memoryless configuration (Case 1). The sets shown in Fig. 3 for Case 2 with σ = 0.2
and σ = 0.4 are, as one might expect, similar to the sets shown in Fig. 4 for Case 3 with
σ = 0.2 and σ = 0.6 respectively. Similar to Case 2, but in a broader σ-range, Case 3
sets also present a two-phase behavior consisting of changes in size and position. Besides
the continuous increase in volume, the sets depicted in Fig. 5 for Case 4 remarkably show
that structures similar to the Mandelbrot set are maintained, although in a range where the
long-term memory load is not as high, up to σ = 0.4.

In addition to dimension reduction with a cutting plane, one can also trim the 3D solids
by a half space. Figure 6 trims the solids at σ = 0.4 with the positive half space starting
from the origin on the b axis. In Fig. 7 for σ = 0.4 the solids are trimmed with the positive
half space starting 0.5 units from the origin on the b axis.

A further slice can be performed to reduce the dimensionality to 2. Figure 8 slices the b
axis by a plane at the origin resulting in a 2 dimensional image of the (a, c) plane, also for
σ = 0.4.

With the 4D visualization techniques presented, one can now consider other quaternion
fractal sets. An example is to consider the generalized Mandelbrot set whose polynomial is

Qk+1 = Qp
k + q, p ∈ N

Figure 9 shows the sliced volumes for p = 3 and p = 4 for the three memory cases with
σ = 0.33. The slicing plane is at d = 0.5, and the trimming by a half space at b = 0.25.

5 Conclusions and Future Work

We have described three types of memory and applied them to the Mandelbrot fractal in
quaternion space. Metrics such as volume and center of mass have been calculated in 4D
rather than only lower dimensional cross-sections. These showed a transition in behaviour as
a function of the memory load σ in Cases 2 and 3, but not in Case 4. Comparisons between
the effects of the different types of memory have been made by generating 3D volumes
using a single slice of the 4D fractal. These are visualized using volume rendering, including
intersecting with a half space to reveal the interior.

The 4D volumes can be computationally expensive, especially for Case 4 which is k times
more demanding than the other cases where k can be as large as the number of terms of the
series used to determine whether a voxel is interior or exterior to the set. This consideration
also reveals that the computation time is largely dependent on the volume of the interior
of the set that is contained within the volumetric region under consideration. The trivial
parallel nature of the generation is obvious from the equations (each voxel state is computed
independently of the neighbors) and this has been demonstrated by employing threads and
observing the computation time is linearly proportional to the number of cores. Future work
can include the realtime computation most likely employing general purpose computing on
the GPU such as Cuda or OpenCL.

With these tools and techniques in place, future research will look at exploring the appli-
cation to other traditionally 2D escape-time fractals, like the Julia set, whose generalization
to any dimension was recently given in [10].

6



References

[1] Abbas, M., Iqbal, H., De la Sen, M.: Generation of Julia and Mandelbrot Sets via Fixed
Points. Symmetry 12(1) (2020). DOI 10.3390/sym12010086. URL https://www.mdpi.

com/2073-8994/12/1/86

[2] Alonso-Sanz, R.: Discrete Systems with Memory. World Scientific (2011). DOI 10.
1142/8119. URL https://www.worldscientific.com/doi/abs/10.1142/8119

[3] Alonso-Sanz, R.: A Glimpse of Complex Maps with Memory. Complex Systems
21(04), 269–282 (2013). DOI 10.25088/ComplexSystems.21.4.269. URL https://www.

complex-systems.com/abstracts/v21_i04_a02/

[4] Alonso-Sanz, R.: The Mandelbrot Set with Partial Memory. Complex Systems
23(03), 227–238 (2014). DOI 10.25088/ComplexSystems.23.3.227. URL https://www.

complex-systems.com/abstracts/v23_i03_a02/

[5] Alonso-Sanz, R.: On Complex Maps with Delay Memory. Fractals 23(03),
1550027 (2015). DOI 10.1142/S0218348X15500279. URL https://doi.org/10.1142/

S0218348X15500279

[6] Alonso-Sanz, R.: On Quaternion Maps with Memory. Complex Systems 24(03),
223–232 (2015). DOI 10.25088/ComplexSystems.24.3.223. URL https://www.

complex-systems.com/abstracts/v24_i03_a02/

[7] Beck, C.: Physical meaning for Mandelbrot and Julia sets. Physica D: Nonlinear Phe-
nomena 125(3), 171–182 (1999). DOI https://doi.org/10.1016/S0167-2789(98)00243-7.
URL https://www.sciencedirect.com/science/article/pii/S0167278998002437

[8] Bedding, S., Briggs, K.: Iteration of quaternion functions. The American Mathematical
Monthly 103(8), 654–664 (1996). URL http://www.jstor.org/stable/2974877

[9] Bourke, P.: Visualising volumetric fractals. GSTF International Journal on Computing
5(2) (2017). DOI 10.5176/2251-3043 5.2.370

[10] Fariello, R., Bourke, P., Lopes, J.P.: Calculating Julia Fractal Sets in Any Embedding
Dimension. Fractals 31(01), 2350018 (2023). DOI 10.1142/S0218348X23500184. URL
https://doi.org/10.1142/S0218348X23500184

[11] Fidan, S.: The use of Micro-CT in Materials Science and Aerospace Engineer-
ing, pp. 267–276. Springer International Publishing, Cham (2020). DOI 10.1007/
978-3-030-16641-0 16. URL https://doi.org/10.1007/978-3-030-16641-0_16

[12] Fulinski, A., Kleczkowski, A.S.: Nonlinear Maps with Memory. Physica Scripta 35(2),
119 (1987). DOI 10.1088/0031-8949/35/2/004. URL https://dx.doi.org/10.1088/

0031-8949/35/2/004

[13] Gomatam, J., Doyle, J., Steves, B.: Quaternionic Generalisation of the Mandelbrot Set,
pp. 557–562. Springer US, Boston, MA (1995). DOI 10.1007/978-1-4899-1085-1 54.
URL https://doi.org/10.1007/978-1-4899-1085-1_54

7

https://www.mdpi.com/2073-8994/12/1/86
https://www.mdpi.com/2073-8994/12/1/86
https://www.worldscientific.com/doi/abs/10.1142/8119
https://www.complex-systems.com/abstracts/v21_i04_a02/
https://www.complex-systems.com/abstracts/v21_i04_a02/
https://www.complex-systems.com/abstracts/v23_i03_a02/
https://www.complex-systems.com/abstracts/v23_i03_a02/
https://doi.org/10.1142/S0218348X15500279
https://doi.org/10.1142/S0218348X15500279
https://www.complex-systems.com/abstracts/v24_i03_a02/
https://www.complex-systems.com/abstracts/v24_i03_a02/
https://www.sciencedirect.com/science/article/pii/S0167278998002437
http://www.jstor.org/stable/2974877
https://doi.org/10.1142/S0218348X23500184
https://doi.org/10.1007/978-3-030-16641-0_16
https://dx.doi.org/10.1088/0031-8949/35/2/004
https://dx.doi.org/10.1088/0031-8949/35/2/004
https://doi.org/10.1007/978-1-4899-1085-1_54


[14] Gomatam, J., Doyle, J., Steves, B., McFarlane, I.: Generalization of the Mandelbrot set:
Quaternionic quadratic maps. Chaos, Solitons & Fractals 5(6), 971–986 (1995). DOI
https://doi.org/10.1016/0960-0779(94)00163-K. URL https://www.sciencedirect.

com/science/article/pii/096007799400163K

[15] Hart, J., Sandin, D., Kauffman, L.: Ray tracing deterministic 3-D fractals. ACM
SIGGRAPH Computer Graphics 23(3), 289–296 (1989). DOI 10.1145/74334.74363

[16] Holbrook, J.A.R.: Quaternionic astroids and starfields. Applied Mathematical Notes
8(2), 1–34 (1983)

[17] Holbrook, J.A.R.: Quaternionic Fatou–Julia sets. Ann. Sci. Math. Québec 11(1), 79–94
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Figure 1: 4 dimensional volume as a function of σ for all four cases. The dotted line marks
the volume of the MH-set (Case 1). Both peaks for Case 2 and 3 coincide in value; that is,
they are both equal to 17.7.
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Figure 2: Center of mass of the real coordinate as a function of σ for all four cases. The
minima of the valleys are precisely at the maxima of the peaks in the volume curves.
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Figure 3: Volume visualization of the set for Case 2 at d = 0.5 at selected values of σ.
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Figure 4: Volume visualization of the set for Case 3 at d = 0.5 at selected values of σ.
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Figure 5: Volume visualization of the set for Case 4 at d = 0.5 at selected values of σ.
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Case 2 Case 3 Case 4

Figure 6: Trimming slice through a half space at the origin on the b axis. The slicing plane
is at d = 0.5. The view bounds are scaled to fit the frame.

Case 2 Case 3 Case 4

Figure 7: Trimming slice through a half space 0.5 units from the origin on the b axis. The
slicing plane is at d = 0.5. The view bounds are scaled to fit the frame.
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Figure 8: Slicing plane at d = 0.5 followed by a slicing plane at b = 0. The view bounds are
scaled to fit the frame.

Case 2 Case 3 Case 4

p=3

p=4

Figure 9: Half space intersections for powers of 3 and 4 for each case at σ = 0.33. The slicing
plane is at d = 0.5. The view bounds are scaled to fit the frame.
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