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Abstract 
 
Capacity for generativity and unlimited association is the defining characteristic of sentience, 
and this capacity somehow arises from neuronal self-organization in the cortex. We have 
previously argued that, consistent with the free energy principle, cortical development is driven 
by synaptic and cellular selection maximizing synchrony, with effects manifest in a wide range 
of features of mesoscopic cortical anatomy. Here we further argue that in the postnatal stage, as 
more structured inputs reach the cortex, the same principles of self-organization continue to 
operate at multitudes of local cortical sites. The unitary ultra-small world structures that emerged 
antenatally are able to represent sequences of spatiotemporal images. Local shifts of presynapses 
from excitatory to inhibitory cells result in local coupling of spatial eigenmodes and 
development of Markov blankets, minimizing prediction errors in each unit’s interactions with 
surrounding neurons.  In response to the superposition of inputs exchanged between cortical 
areas, more complicated, potentially cognitive, structures are competitively selected by the 
merging of units and elimination of redundant connections that follow from the minimization of 
variational free energy and removal of redundant degrees of freedom. The trajectory along which 
free energy is minimized is shaped by interaction with sensorimotor, limbic and brain stem 
mechanisms, providing a basis for creative and unlimited associative learning.  
   

1. Introduction 
                                          
The search for rules that account for the function of the mammalian brain, and more specifically 
the role of the cerebral cortex, is long-standing and central to biological neuroscience, as well as 
to the development of artificial intelligence (eg, James, 1890; Freud, 1895; Sherrington 
1906,1940; Pitts and McCullough, 1947; Hebb, 1949; Ashby, 1960; Young, 1964; Edelman, 
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1987, Domingos, 2015). Somehow the development and interaction of individual cortical 
neurons, each obeying their own metabolic necessities, lead to sentience. Two recent proposals 
seek to define essential features at each of the highest and lowest levels; the concept of unlimited 
associative learning on the one hand (Ginsburg and Jablonska, 2019; Birch et al, 2020), and the 
energy homeostasis principle of neurons on the other (Vergara et al, 2019). The free energy 
principle of Friston and colleagues offers a powerful abstract theoretical bridge between these 
concepts, even to the extent that a form of neuromorphic computation can be seen to emerge 
inevitably in all self-organizing systems (Fields et al., 2022). How this abstract principle 
becomes manifest at the level of conventional anatomical cellular description requires 
explanation. The account of mesocortical embryogenesis developed by the present authors 
explains aspects of observable cortical self-organization in accord with the free energy principle, 
partially meeting this need. We here extend our earlier arguments to show that there is a unity 
between all the above ideas, and that the property of unlimited association, or generativity, is 
implicit in our earlier account. 
 
1.1 Generativity and unlimited associative learning 
 
The concept of unlimited associative learning defines sentience as the capacity to develop very 
general learning, outside the bounds of Pavlovian or operant conditioning. Within the limitation 
of the organism’s life and capacity, sentient organisms extract what they can from the 
information available to them, so as to make their way in the world – without being bound to the 
exact sequence in which subcomponents of learning are acquired and later associated. This 
notion follows long discussion of conditioning versus spontaneous mentation, expressed 
particularly regarding the development of speech, in the famous Chomsky-Skinner debate 
(Skinner, 1957; Chomsky, 1959). Currently the emulation of generativity is of importance in the 
commercial development of AI (ChatGPT (OpenAI); LAMDA (Google)). 
 
Unlimited associative learning has appeared only in some insects (honey bees), some arthropods 
(squids and octopuses), and the vertebrates – and is associated with the evolution of cortex-like 
structures. It is equally clear that this additional capacity for learning outside immediate stimulus 
and action-bound constraints is built upon the underlying, more obviously reflexive, base of (in 
the case of mammals) brain-stem, thalamo-striate and limbic systems – subsystems with which 
the neocortex interacts, and also acts in parallel, in the reception of sensory input and execution 
of motor commands. 
 
Unlimited association implies the individual’s creative anticipation of potential 
organism/environmental interactions, with exploration of these possibilities taking place “off-
line” from overt behaviour - yet becoming coupled to immediate sensory experience (Pavlovian 
conditioning) and the consequences of expressed behaviour (Skinnerian conditioning) as 
circumstance demands - and that selection from a large set of possible behaviours must generally 
be those that are favourable to the organism. How these aspects are reconciled is a part of the 
puzzle to be solved. 
 
We hope to show that unlimited associative learning is a natural outcome of the enormous 
number of neural activity states and rapid information exchanges within cortex, and that its 
mechanisms are reflected in observable mesoscopic cortical anatomy. A selective development 
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of behaviour from reinforced imagination is accommodated in our account, subject to the 
mathematical constraints of the free energy principle. 
 
 
1.2 The free energy principle, error minimization, and synchrony 
 
The neurodynamic and mesoscopic growth models to be subsequently considered were 
developed independently to the presently understood free energy principle (Wright and Kydd 
1984; Wright 1989). Instead, our work sprang from consideration of the dynamics of 
electrocortical activity as arising from coupled stochastic oscillators, and analogy of 
electrocortical steady states to thermal equilibrium. It was recently realised that this treatment 
conformed with the more rigorous formalism of the free energy principle proper. Our appeal to 
the free energy principle is more qualitative than quantitative, and our arguments geometric 
rather than analytic. 
 
The free energy principle, spearheaded by Friston and colleagues (Friston, 2002, 2005,2010, 
2020, 2022; Friston and Ao, 2012; Friston et al, 2012; Clark, 2013; Buckley et al. 2017; 
Constant, 2021) draws parallels between laws of nature at all levels, from the principle of least 
action to the organization of artificial and real intelligence. A central concept is provided by 
Jaynes’ explicit linking of the maximum entropy principle of optimum statistical information 
representation to the laws of thermodynamics (Jaynes, 1957) and the principle can be understood 
from the perspective of inference and the Bayesian brain, or neuron (Friston 2010), as dual to 
Jaynes’ constrained maximum entropy principle (Ramstead et al. 2022; Sakthivadivel,2022). 
This perspective follows from the fact that the variational free energy of inputs to any system is 
their negative log evidence, or marginal likelihood, so that one can interpret self-organisation in 
neuronal systems as a form of self-evidencing (Hohwy 2016, Palacios, Razi et al. 2017); namely, 
changing in a way to maximise the marginal likelihood of its representation of all the inputs it 
receives from other neuronal systems. Some worked examples, from the point of view of single 
neurons can be found in Kiebel and Friston (2011). A related formulation of pattern formation 
and morphogenesis with point neurons can be found in Friston, Levin et al. (2015). In terms of 
neuronal dynamics, the minimisation of free energy leads to a generalised synchrony that can be 
read as the minimisation of surprisal. In turn, this surprisal can be regarded as prediction error, in 
anticipatory interactions among coupled neuronal systems. Technically, prediction errors 
correspond to the free energy gradients that drive neuronal dynamics. This means that neuronal 
dynamics are in the service of minimising prediction errors, and lead to generalised synchrony 
that — as we will see later — emerge as correlations in synchronous oscillations. 
 
For present purposes, another way to express the idea of self-evidencing and minimised 
prediction error, is that within any system with a boundary (a Markov blanket) via which it must 
interact with a surrounding environment, an open steady state must be reached, in which equal 
and opposite signals are continuously exchanged via the blanket, so as to cancel each other. Here 
the term “Markov blanket” means that events interior and exterior to the blanket are 
stochastically independent apart from their mutual dependences on the blanket states. In a 
physical system this is a condition required for stability of the enclosed system, and its resistance 
to perturbation.  In informational terms, where brain states are regarded as enclosed in a Markov 
blanket in their interaction with environmental states, then at an asymptotic limit of learning, 
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when learning is complete and perfectly adapted, information exchanges between brain and 
environment would correspond exactly to their mutual information. Although this asymptotic 
limit could probably never be reached in life, it offers an important guide when applied to the 
cerebral cortex. Exchange of completely mutual information requires that for most efficient 
matching there must exist a 1:1 mapping: a single topology for information representation in the 
external and internal worlds – a mapping of all sensory and motor interactions with the 
environment onto the structure of developed synaptic connectivity, with a common metric, and 
common dimensionality of the external and internal worlds. Synaptic connections would have 
developed as pathways for neural signals to pass through so that the passages of signals replicate 
all the ways the organism has learned to interact with the world – and, in the case of the cortex, 
must form this map via its interactions with intervening subcortical systems. In the following 
arguments we show that the emergence of synaptic connectivity during cortical embryogenesis 
and later learning leads to such 1:1 maps in realistic anatomical configurations. We not only 
consider the cerebral cortex as itself enclosed in a Markov blanket separating it from the brain 
stem, and thus the external world, but treat small groups of neurons in the cerebral cortex as 
themselves becoming enclosed in Markov blankets, so that there is an enclosure of blankets-
within-blankets.  
 
Variational free energy inherits its name from free energy as in thermodynamics, which is the 
system’s internal energy minus its entropic energy. Statistically, the dual is accuracy minus 
complexity. These complementary perspectives on free energy are formulated in equations (1) 
and (2) below, in terms applicable to synaptic activity and plasticity used later to illustrate key 
emergent properties. 
 
The first of these two equations is  
 

𝐹 = 𝐴 − 𝐶 1 
 
where 𝐴 is the population sum of action potential pulse autocorrelations in a population of 
excitatory and inhibitory neurons within a short epoch, and 𝐶 is the corresponding sum of pulse 
cross-correlations. The electrocortical system exchanges signals with the environment in analogy 
to a thermodynamic system exchanging heat with both a heat source (signal generation) and a 
heat sink (dissipation of pulses in dendrites). Consequently 𝐴 is analogous to internal energy, and 
𝐶 to energy associated with entropy.  𝐹, the analogue of thermodynamic free energy, is 
continuously minimized as cortical connections become more ordered and reciprocal. 
Minimization must continue in relative terms, even if the number of cells is increasing over time, 
as is the case during neurodevelopment.  
 
In equation (1) both pulse auto-correlations, and cross-correlations including lag correlations, 
can be given in equivalent terms as the emitted and received synaptic fluxes, 𝜑!","! 
between 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ cells, where synaptic flux is the afferent pulse rate to pre-synapses 
weighted by synaptic gain factors. Thus 
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1
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for  𝑛 directed flows between cells, in combinations 𝑖𝑗, 𝑗𝑖 during an epoch 𝑇, with lead and lags,  
𝜏, and times 𝑡 = 0 − 𝑇. We will consider the changes in the cross-correlation structure as 
development proceeds, and will decompose cross-correlation into interactions of combinations of 
excitatory, 𝑒, or inhibitory, 𝑖,  pairs of neurons,  and mixed pairs, thus 
 

𝐶 = 𝐶,, + 𝐶!! + 𝐶,!,!, 1𝑏 
 
 
The second representation, equation (2) is equivalent, but is stated in terms of accuracy and 
complexity. As learning progresses, the complexity of the information stored in the synaptic 
connections must increase, as must the dimension of its statistical model, obeying a time-
dependent version of the Akaike Criterion (Akaike, 1974). 
 
 

𝛼(𝑡) = 2𝑙𝑛𝐿(𝑘) − 2𝑘 2 
 
 

Here 𝑎𝑟𝑔𝑚𝑖𝑛𝛼(𝑘, 𝑡) is the Akaike Criterion optimum, and is a representation of variational free 
energy when minimized to determine optimum 𝑘 at each stage of learning. It is then a measure of 
how reproducibly neural circuits will respond on subsequent presentation of similar inputs. The 
log likelihood,  𝑙𝑛𝐿(𝑘) measures how accurately the synaptic connections represent this stored 
information, and 𝑘 is the number of orthogonal dimensions or degrees of freedom required to 
represent partial correlations among the terms summed in equation (1a). This is one of a number 
of alternative decompositions of variational free energy into accuracy minus complexity (Penny 
2012). As the amount of information stored increases with learning, so must the dimension, 𝑘, of 
the most efficient descriptive model. As learning progresses and free energy is minimized, 
accuracy increases but under the constraint that complexity is minimised by elimination of 
redundant degrees of freedom. Thus 𝐿(𝑘) → 1, as random synaptic connections are progressively 
eliminated.  

 
 
1.3 The free energy principle, and the pleasure principle 
 
Application of the free energy principle to the brain has been controversial in certain respects 
(Friston et al. 2012, Mann et al. 2022, Bruinberg et al. 2022). One aspect that has been widely 
discussed is the possible termination of learning in conditions of minimal stimulation rather than 
its owner’s active engagement in life (Friston et al., 2012, Clark, 2013). These problems are dealt 
with by ascribing the organism an inherited tendency to go into circumstances that are best for it 
- its “preferred states”, based upon the properties of its sensory receptors - a modern-day version 
of Freud’s pleasure principle. The preferred states are those with negative surprisal, so the 
organism is seen as solving a multiple constraint satisfaction problem. How this takes place is 
necessarily related to the exact means by which global free energy is minimized at meso- and 
micro-scales. 
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In this paper we attempt to contribute to understanding of these issues by showing stable overall 
synaptic structures can emerge from smaller subsets of networks, themselves stable, and formed 
at preliminary and intermediate stages, subject to the initial guidance of innate “preferred states”. 
Acquiring a capacity for generalising further from initial learning, the organism then becomes 
increasingly unbound by innate predispositions. In this way we hope to show that the operation 
of the free energy principle provides the key by which unlimited association emerges assisted by, 
but not limited to, operant and Pavlovian learning.  
 
 
1.4 Competitive neuronal growth 
 
The growth of neurons from their precursor forms is subject to continuing death from apoptosis 
of some cells and the flourishing of others with expansion and re-arrangement of their synaptic 
contacts. These processes are known to be subject to uptake of neural growth factors and the 
operation of a caspase execution pathway activated in those cells that undergo apoptosis 
(Elmore, 2007). A comparatively simple explanation for the distinction between those cells that 
die and those that thrive is given in the energy homeostasis principle (Vergara et al, 2019). This 
argues that a crucial factor is the energy economy of individual neurons and their supporting 
astrocytes – a criticality forced by the extreme elongation of neurons, their large surface area and 
the high metabolic demands made by ion pumping in axons and synapses. The homeostasis 
principle proposes that each neuron continually self-adjusts between an extreme of high energy 
utilization and activity with increasingly rapid synaptogenesis, and an extreme of energy 
resource underconsumption - the extremes bounded by negative feedback processes on the one 
hand, and by cell death on the other. Neurotropic factors, and the caspase execution pathway of 
apoptosis are intermediaries of the metabolic processes. We accept this concept as correct in 
principle, without comment as to specific metabolic pathways, and argue additionally that the 
engagement of neurons in synchronous oscillation, thus elevating their level of metabolic activity 
above the baseline action potential rate, acts as the driver for synaptogenesis and survival.  
 
The energy homeostasis principle does not in itself account for the spatial disposition of 
particular synapses from/to the neuron. A further part of our purpose is to explain how during the 
development of the cortex synaptic dispositions develop as they do, although it is not our 
intention to imply that the energy homeostasis principle is a sufficient model of the complexity 
of experience-expectant and experience-dependant plasticity. A complete account would need to 
consider the concurrent unfolding of the genetic program and a wealth of other factors, from 
hormonal effects and stimulus characteristics up to and including societal factors (eg, Nelson 
1999, Mateos-Aparicio and Rodriguez-Moreno 2019, Mohammad and Khalil, 2020). All these 
wider influences would, in our account, act to modulate energy dependent growth and selection 
by apoptosis. 
 
 
1.5 Cortical neurodynamics 
 
Neural field equations essential for the arguments that follow are given in Wright and Bourke 
(2021a). The development of our specific form and parameterisation of neural field equations is 
recounted in Wright (2016), with debts to Beurle (1956), Wilson and Cowan (1972), Freeman 
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(1975) , Nunez (1981), Lopez da Silva (1976), and Liljenstrom (1991). The equations are 
sufficient to model the power spectrum, frequency wavenumber content, evoked responses, 
synchrony and eigenmodes of electrocortical waves (Wright and Liley,1995,1996; Robinson et al 
1997,2001; Rennie et al. 2002; Chapman et al. 2002, Henderson et al. (2022). The mechanism 
leading to synchrony is the selective dissipation at dendritic junctions of asynchronous pre-
synaptic pulses, and summation of co-incident synaptic inputs  – a universal attribute of all 
summing junctions, including dendrites (Chapman et al. 2002). Although synchrony can arise 
because neurons are driven by common inputs, and nonlinear phase-locking of neurons can also 
lead to their  synchrony, widespread synchrony always arises in the neural field when coupling 
strengths between cells (whether via polysynaptic or monosynaptic connections) are 
bidirectionally symmetric, and the cells are driven by spatially diffuse white noise inputs. It is 
this universal mechanism of synchronous equilibrium upon which our subsequent arguments 
depend. Because of this mechanism, when sufficiently driven, neurons enter into synchronous 
oscillation. At synchronous equilibrium, all excitatory cells fire synchronously, all inhibitory 
cells fire synchronously, and excitatory and inhibitory cells fire in antiphase. At lower levels of 
excitation the background firing rate of most cells in the cortex for most of the time is a low 
Poisson distribution of action potentials. Neurons that fire synchronously and frequently, are 
therefore driven toward more active synaptogenesis in accord with the energy homeostasis 
principle. 
 
Transfer of these dynamic properties to simplified growth simulations requires assumption of 
unified fast and slow synaptic learning rules (Izhikevich and Desai 2003) in which synaptic 
strength is modified on a pulse-by-pulse basis when operating upon short-term plasticity (STP) 
and short-term depression (STD).  Slower and more permanent synaptic gain modification 
follows the Bienenstock-Cooper-Monro (BCM) rule, subject to slow “floating hook” negative 
feedback. New synaptic growth is cumulative on the fast and slow synaptic changes, and subject 
to decay with synaptic disuse. Consistency with the energy homeostasis principle requires that 
synaptic changes are competitive on all time-scales. 
 
 

2. Cortical embryogenesis and apoptosis. The primary antenatal synaptic scaffold 
 
The account of antenatal development of neocortex given in Wright and Bourke (2013, 2016, 
2021a,b, 2022) exploits the neural and synaptic dynamics given above in such a way that growth 
can be modelled by a simple force-equilibrium process. This explains the pattern of connections 
that develop in the embryonic cortex and early in post-natal life, emphasizing lateral organization 
of the cortex at millimetric scale, without specific attention to cellular organization in cortical 
layers. While developed mainly in relation to the primary visual cortical area (V1), simulation 
findings indicate the model is applicable to all cortex, whether columnar or non-columnar.  
 
Anatomical considerations 
 
The explanatory power of the model arises from its account of superficial patch connections and 
their relationship to short axon cells surrounding the center of cortical columns in V1. Properties 
of orientation preference (OP), spatial frequency preference (SFP), and temporal frequency 
preferences (TFP) of cortical cells and their topologies are explained as consequences of the 
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connection geometry and conduction lags of the patch cells, as these provide contextual inputs to 
cortical neurons additional to direct inputs from the visual pathway. The anatomical background 
literature is cited in Wright and Bourke (2013, 2016) and the historical development of models 
for the anatomical and physiological properties is reviewed in Wright and Bourke (2022). Figure 
1a summarizes the main structural features.  
 
Superficial patch cells.  
Throughout the cortex in all species, layers II and III of cortex have aggregated patches of cell 
bodies of relatively long axon pyramidal cells. The patches are of approximate diameter 50 to 
300 microns, depending upon species and situation. They arise during early embryogenesis, 
forming synaptic connections within each patch and between patches, projecting not only to 
immediate neighbors, but to more distant patches. Neighboring patches which are reciprocally 
connected are spaced apart by about the same distance as the size of the patches, and thus tile the 
cortical plane. In area V1 this leads to a roughly hexagonal gridwork, as shown in the left-hand 
frame of Figure 1a - or a square gridwork in ocular dominance columns. 
 
Cortical columns and OP.   
In V1, populations of short axon cells, both excitatory and inhibitory, are enclosed by the patch 
cell system, forming cortical columns. The excitatory cells respond selectively to slowly moving 
orientated lines moving in the subject’s visual field and projected by the visual pathway to the 
cell’s position in V1, thus revealing their OP. The OP of the cells is ordered such that OP from 0 
to 180 degrees circles the center of each column over 0 to 360 degrees, creating an OP 
singularity. Away from the singularity OP varies continuously, and OP order within adjacent 
columns tends to mirror that of its neighbors, within the limits imposed by the hexagonal or 
square order, as shown in the middle frame of Figure 1a. Continuities of OP between columns 
produce linear zones and saddle points. 
 
Also shown in the middle frame of Figure 1a, the cells in the patch system form synaptic 
connections with cells in the cortical columns, any given patch projecting to columnar cells all 
sharing a common OP, and creating systems of “like to like” connections linked by chains of 
patch cells in roughly straight lines. In this way contextual information about activity in the 
wider cortical field is being conveyed to cells of given OP within each column. 
 
Cortical areas that are clearly columnar are best seen in V1 of large animal species. More 
generally this ordered structure is not apparent, but is blurred by overlapping patch systems, and 
by smearing of selective cell responses, as indicated in the right-hand frame of Figure 1a. 
However, even at its most apparently disorganized, some vestige of the patch and column 
organization generally remains.  
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Figure 1a. Connections at mesocortical scale, seen in plan view of the cortical surface. 
Left: Superficial patch cells in ordered array.  
Middle: Columnar organization of orientation preference about singularities, colour-coded as 
shown for stimulus line orientations in the key. 
 Like-to-like connections (small black dots) surround superficial patches and project to cells 
with common OP. 
Right: Loss of apparent structure in noncolumnar cortex – eg: V1 in a small animal species, 
or non-V1 cortex. 
Key: Colour-coded lines oriented from 0-180 degrees matching displayed OP.  
 
The model of embryogenesis 
 
The origin of superficial patch-to-patch connectivity and “like-to-like” connections are key to the 
model, as once these are accounted for, the organization of OP singularities, linear zones and 
saddle points, in both monocular V1 and ocular dominance columns, the variation of OP with 
stimulus angle and speed, the interrelationship of SFP and TFP and their topological relations to 
OP, all follow as logical consequences. No previous account has yet been able to explain more 
than a few of these features in a single model. In the summary below we focus on development 
of the key anatomical features illustrated in Figure 1a. 
 
During embryogenesis synchronous firing of neurons protects them against apoptosis (Heck et al 
2008, Sang et al. 2021, Warm et al. 2022), as they form into small-world assemblies (Downes et 
al 2012). Selection of developing neurons and synapses by apoptosis so as to maximize 
synchronous cell firing would thus shape outcome of genetically regulated cell numbers, patterns 
of cell migration, and differentiation into cell phenotypes (Rakic 2009, Geschwind and Rakic 
2013, ). Since synchronous oscillation is the “ground state” of equilibrium pulse exchanges 
among mixed excitatory and inhibitory cells, while constantly seeking equilibrium, the 
developing neurons are holding themselves within the domain of average firing rate that is 
optimal within the energy homeostasis principle, 
 
The early selection process is followed in a population of short and long-axon excitatory 
intracortical cells, mixed with short-axon inhibitory partners, linked in a very sparse network, 
with one-to-very-many connectivity, and rich axonal/dendritic contacts at which synapses will 
emerge at only a relatively few locations. Equilibrium requires that synaptic flux be equal in both 
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directions between any given pair of neurons in the developing cortex, or any small groups of 
neurons with cell bodies closely situated and of similar characteristics within groups. That is; 
 

𝜑!" = 𝜑"! 3 
 
 
where 𝜑!","! 	represent the exchanged pre-synaptic fluxes between i-th and j-th neurons over all 
pathways of connection. Competition and feedbacks inherent in synaptic learning rules lead 
toward  bidirectional symmetry of gains along the prolific pathways, so a trend develops such 
that  
 

𝜌!"𝑔!"𝜖!" = 𝜌"!𝑔"!𝜖"! 4 
 
 
where 𝜌!","! is the net connectivity between the two cells because of synaptic growth, over all 
paths of polysynaptic connections between them, 𝑔!","! is the synapses’ net slowly consolidated 
synaptic gain, according to the BCM rule,  and 𝜖!","! is their fast transient synaptic efficacy, 
operating within STP and STD. Each of the three factors converges toward symmetry – some 
pairs of cells losing, others increasing, their reciprocal connectivity. On the fast time scale, the 
synaptic efficacies determine the patterns of synchronous pulsing. On the slower time scales, 
patterns of stronger synaptic coupling become established at those sites of axo-dendritic contact 
that favour synchrony. 
 
Neurons  unsuccessful in these competitive processes are eliminated. Selection of synapses that 
will increase synchrony leads to substitution of the initial, almost entirely unidirectional 
excitatory synaptic links, by an increasing proportion of bidirectional monosynaptic connections. 
Thus, free energy as defined in equation (1) is progressively minimized.  
 

 
 
Figure 1b.. Modified from Wright and Bourke, 2022. Geometric patterns of synaptic 
connectivity in idealised outcomes of growth simulations. Soma of short axon local excitatory 
cells, forming columns, are marked by blue dots, while soma of longer axon (patch) cells are 
marked by small red dots, in hexagonal array.   
Left: Superficial patch cells. A representative long-axon cell (large red central spot) and patch 
connections. Surrounding zones of potential connection with other patch cells in ultra-small-
world array have been delineated in light grey concentric circles. Dark grey patches occur 
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where other clusters of patch cells are positioned and able to make reciprocal connections, 
regularly spaced, patch-to-patch. 
Middle. Local connectivity. Sparse short-axon cell connections have been marked in black or 
white, showing how interweaving networks occur. Some connections result in partial closure 
rather than complete independence of the interpenetrating networks. Fields of synaptic 
connections from patch cells to local cells are coloured red, green, and blue according to their 
origins from diametrically opposite patch cell clusters These oppositely placed cell groups 
establish synapses on interpenetrating, distinct parts of the local cell network in the pattern 
best maximizing synchronous resonance, and creating local maps. 
Right. A representation of intermingled networks of short-axon local cells conceptualized as 
cross-connected systems analogous to Mobius strip, and viewed at an angle oblique to the 
cortical surface. Red, blue, and green bands indicate synaptic connections to/from the 
surrounding patch cell network. The degree of overlap of the small-world systems can vary 
from clearly columnar, to blurring with apparent absence of columnar order. 
 
The emergence of bidirectional monosynaptic connections in patterns that maximize synchrony 
has effects diagrammed in Figure 1b, and these reflect the basic anatomical findings shown in 
Figure 1a.  
 
Patch cell connections emerge because beyond a distance, 𝑋, from their somas, the long axon 
cell have a greater population axonal density than the short axon pyramidal cells, and vice-versa 
– while at distance 𝑋 axonal densities are equal for the two cell types. Linkages of the neurons 
into ultra-small world configuration requires the long-axon cells to cluster locally, with cluster 
separations at distance 𝑋, so that they form synaptic connections with other patches, maximizing 
synchrony, via inter-patch connections skipping at multiples of 𝑋 to neighbouring clusters. This 
leads to their forming a regular tiling of the cortex, as shown in both Figure 1a and modelled in 
Figure 1b. Many such systems of tiled patches can form, so the patch systems can overlap, as is 
the case shown in the right hand panels of Figures 1a,b.  
 
As shown in the middle panel of Figure 1b, the enclosures formed by the patch cell system are 
filled by short-axon local cells, forming preferential reciprocal synaptic connections at distances 
less than 𝑋. The sparsity of all connectivity means that interpenetrating networks of the short 
axon cells form with sparse cross-links maximizing their total synchrony. 
 
Between the long axon and short axon cell types, bidirectional monosynaptic connections 
emerge at distance of separation 𝑋, since this is the distance at which their population axonal 
densities are equal. This produces a projection of the wider cortical surface (termed “the global 
map”) via the superficial patch cells, to neurons within neighbourhood short-axon clusters 
(termed “the local maps”), reproducing the “like to like” connections shown in the middle frame 
of Figure 1a. The reason OP from 0-180 degrees circles the singularity around all 360 degrees, as 
diagrammed in the middle frame of Figure 1b, is as follows: 
 
A 1:1 global map projection to each of the set of neighboring local maps must take the form 
 



 12 

𝑃 → J𝑝 = ±𝑝-
(𝑃 − 𝑝())

|𝑃 − 𝑝(|)&.
+ 𝑝(N 5 

 
where 𝑃 is a position in the global map, and 𝑝 is a position in a local map, each designated as 
complex numbers; 𝑛 determines the angular multiplication from the global to the local map; 𝑝- =
√−1𝑘 defines the rotation and scale of the local map; ± indicates map chirality, and 𝑝( =
𝑝((1), 𝑝((2), 𝑝((3), … are the local map centers.  
 
The reason this mapping develops is that presynapses develop from superficial patch cells to 
local cells (from which reciprocal connections return) in arcs of a circle of radius 𝑋, the arcs 
radiating from each map center. This requires that the projection of the global map to the local 
map be rotated by 90 degrees. Further, a 1:1 projection of the global to the local maps in their 
partially cross-connected sheets of interpenetrating networks, requires  𝑛 take even integer 
values, so that angles are doubled in the projection from the global map, and are thus deployed 
around the re-entrant-loop configuration of the local map. This produces the effect that OP 
angles 0-180 degrees circle the singularity. The simplest case, 𝑛 = 2, is that of projection to a 
single Mobius strip, or to multiple cross-linked Mobius strip-like networks. Other cases 
representing more complicated patterns of 𝑛 = 4,6,8…  may also be embedded and cross-linked 
with each other, but will create a similarly appearing OP map.  
 
These considerations enable us to define an elementary mesoanatomical unit as a local map and 
its inputs and outputs via superficial patch connections. This organization we regard as 
elementary for the entire cortex – not restricted to V1, where its columnar form is readily 
apparent. 
 
Antenatal cross-correlations and the dimensionality of the mesoanatomical units. 
 
Since the antenatal mesoanatomical units arise as bidirectional and symmetric monosynaptic 
connections emerge in a field driven by diffuse noise, in equation (1) the corresponding cross-
correlation structure has terms with maxima at zero-lag for excitatory-excitatory and inhibitory-
inhibitory pairs respectively, and maxima at the lag of the reversed phases of the excitatory-
inhibitory pairs, as these maxima correspond to zero-lag synchronous equilibrium.  In equation 
(2) the mesoanatomical unit could be specified by a model of 𝑘 = 3 dimension, since there is 
continuous rotational symmetry about the OP singularity, with a depth dimension introduced by 
Mobius-strip-like folding of the local map. This folding disambiguates the identity of distance 
from the local map center and the associated time-lag.  
 
 
 

3. Postnatal information storage on the antenatal scaffold.  
 

3.1 Postnatal spatiotemporal maps, and spatial and temporal frequency preferences 
 
The mesoanatomical units offer a scaffold upon which spatiotemporal images and sequences can 
be represented. Since antenatal connections reflect the declining synchrony-versus-distance 
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relationship general among cortical neurons, and are structured in three dimensions, this 
approximates the same topological order of generally declining cross-correlation-versus-distance 
relationships of the sensory surface in space, and in time. The antenatal map thus provides a 
scaffold of a sufficient dimension for representation of stimulus objects moving in two spatial 
dimensions and time.  
 
As structured inputs arrive from cortical input pathways, these create patterns of active cell 
firing, 𝑂(𝑃, 𝑡), and these activity patterns are these are relayed via patch cells to positions {𝑝} in 
many local maps. Since they are transmitted with conduction delays, they then give rise to 
activity patterns, {𝑜}, within each of the local maps,  
 

𝑂(𝑃, 𝑡) → J𝑜 X𝑝, 𝑡 +
|𝑃 − 𝑝|
𝜈 ZN 6 

 
 
where 𝜈 is the velocity of signal conduction. 
 
Figure 2 shows this signal transfer diagrammatically. A single point of stimulus input at global 
level, varying in position with time, becomes mapped to multiple concurrently pulsing neurons. 
Particularly if inputs to these cells arrive in approximate synchrony, the interaction of the excited 
neurons will lead to the cells exchanging signals, and as they seek equilibrium, entering 
synchrony as a whole, by the general mechanism discussed in Section 1.5. Each of the 
concurrently active neurons has received information about the moving input at different 
positions and times. The synchronous set of neurons thus contains information about average 
position, velocity, and acceleration of the moving point, within a short epoch – the epoch defined 
by the duration of sustained synchrony. These synaptic assemblies of cells induced to fire in 
synchrony are spatiotemporal images.1 Since the inputs are moving in two spatial dimensions, 
and time, they can be represented upon the three-dimensional space of the antenatal 
mesoanatomical units, but the break in connection symmetry as new synaptic connections are 
induced by co-synchrony requires increasing model dimension. A series of images of this sort 
can be linked together by unidirectional connections to form assemblies of moving images, and 
at points of overlap further bilateral connections can store partial correlations of separate images. 
These considerations foreshadow postnatal increase in the dimension of the stored information.  
 

 
1 Any single spatiotemoral image need only be an incomplete representation of stimulus properties. If the points 
and times in 𝑂(𝑃, 𝑡) are widely separated, the image will covey information mainly about the “where” and “when” 
of the stimulus. If the points are closely located, then the emphasis will be on stimulus details – of “what” it is. This 
corresponds to receptor field tuning of neurons in the dorsal and ventral neocortical systems respectively (Tucker 
and Lu, 2023) 
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Figure 2. Projections from global to local fields in the cortex, resulting in spatiotemporal 
representations. 
 Left:  Projection of a moving point in the sensory field to the cortex. The image transit in the 
global field from 𝑷(𝒕𝟎) to 𝑷]𝒕𝒇𝒊𝒏𝒂𝒍^  is marked in the colours of the spectrum, to indicate both 
cortical position and time of transit. Lateral relay via patch cells transfers the  input to a 
cluster of small-world local map ensembles of cells (columns), centred in the same reference 
frame as the moving stimulus. All the local neurons activated within the brief epoch, marked 
in the appropriate colour for their signal input from the global map, are able to enter into 
synchrony, thus creating a representation of stimulus position and movement within the 
epoch.  
Right: The same representation of global and local maps used on the left is applied. Positions 
in the global cortical field approximately circumferential to the reference origin are coloured 
amber, and a line passing near the origin is coloured blue. Projections of the circumferential 
and radial lines within the local maps retain their approximately circumferential and radial 
relations, and correspond to neurons with high space- and temporal frequency, and low space- 
and temporal frequency preferences, respectively.   
 
Also shown in Figure 2, and further illustrating the postnatal increase in dimension, structured 
postnatal inputs bring about a systematic re-organization of synaptic connectivity within the 
short-axons cells of the local maps, breaking the antenatal rotational symmetry (Wright and 
Bourke, 2022). Signals originating from global positions circumferentially arranged around the 
centre of a local map generate circumferential connectivity within the local map, while those 
radial to the local map centre reinforce the antenatal radial “like to like” connectivity. The 
response characteristics, and the anatomical distributions, of high and low space frequency 
preferences (HFSP, LFSP), and temporal frequency preferences (TFP) of V1 neurons can be thus 
explained – the essential reason being that signals generated concurrently in circumferential 
positions in the global map relay to the local map with equal, or near-equal delays, generating a 
relatively high frequency and synchronous signal in the local cells. Conversely, signals generated 
concurrently at positions oriented radially in the global to local projection arrive with different 
delays, and therefore generate activity at a lower frequency. (Similar considerations also explain 
the variation of OP with stimulus velocity and angle of attack.) This leads to the generation of 
zones of connected local cells that respond to different input frequencies – that is to the creating 
of separate synchronous eigenmodes. 
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3.2 Maps in multiple cortical areas, and motor outputs 
 
The bidirectional connections formed in the global-to-local maps can be regarded as having a 
“forward” sensory relay function, as in equation (5) but also a “backward”, motor-efferent 
function, given by signals following connections that are the inverse of equation (5) – viz: 
 

𝑃 ← ±
1
𝑝-
(𝑝 − 𝑝()

.
)|𝑝 − 𝑝(|)&. − 𝑝( 7 

 
Extending this organizational principle to the motor cortices, the output of motor commands 
follows the same form as equation (6), but in reverse – that is 
 

𝑀(𝑃, 𝑡) ← J𝑜 X𝑝, 𝑡 −
|𝑃 − 𝑝|
𝜈 ZN 8 

 
 
where 𝑀(𝑃, 𝑡) represents a time-ordered sequence of efferent motor commands. 
 
Signal transmission through the cortex does not, of course, simply pass directly from sensory to 
motor systems, but is mediated additionally via complex exchanges within association areas. 
How, by synchrony matching between cortical areas, information stored and manipulated at 
mesoscopic scale may contribute to cortical computation, has been discussed in Wright and 
Bourke (2021a,b). From these exchanges, “unlimited association” must be generated. But how? 
We next suggest that it is in the backward and forward exchange of signals between patch cells 
and local maps, under minimization of prediction error, that an important part of the solution can 
be found.  
 
 

4. Postnatal modifications of connectivity under structured inputs 
 
4.1 Stability approaching asymptotic limit of learning, and eigenmode coupling 
 
If the asymptotic limit of learning is to be continuously approached in the face of ongoing 
perturbation, the free energy principle requires the difference in exchanged signals must be 
progressively minimized to zero at critical parts of the network - all those higher and lower in a 
hierarchy of signal flow.  
 
As well as the flows of signals into, from, and between, cortical areas, which take place via 
topographic projections, we need to consider flows of signals laterally across the cortical surface 
in the connections between patch cells and short-axon cells described in equations (5) and (7). At 
the learning asymptote, the two-way flow must cancel the flow from lower to higher in the 
hierarchy. This requires the generation within the local map network of patterns of activity that 
replicate in anticipation the pattern of activity that will next arrive in the global map – the reverse 
of arrivals described by equation (6) - so that 
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J𝑜 X𝑝, 𝑡 −
|𝑃 − 𝑝|
𝜈 ZN → 𝑂(𝑃, 𝑡) 9 

   
 
The generation of this patterned activity can be described as the action of coupled eigenmodes – 
that is, fields of synchronous activity that interact in some way with each other to produce the 
required time-varying patterns. More complicated cross-correlation terms must then appear in 
equations (1, 1a, 1b). 
 
There must also be certain cells at which the forward and backward flows converge to cancel, so 
for these cells only, where {𝑜}c ∈ {𝑜} and {𝑂}c ∈ {𝑂} 
 

{𝑜e(𝑝, 𝑡)} ↔ 𝑂g(𝑃, 𝑡) 10 
   
This set of cells acts as a Markov blanket between the global field, and each of the local maps. 
  
These considerations raise the question of how synaptic connectivity in the neural field must be 
modified to serve the functions of eigenmode coupling and the formation of mesoscale Markov 
blankets. 
 
4.2 Changes in synaptic flux and connectivity 
 
To facilitate consideration of the coupling of spatial eigenmodes, the neural field can be 
represented as stochastic oscillators, each oscillator being a small group of interacting excitatory 
and inhibitory cells, and each group linked at longer range by excitatory cells (Wright, 1989). 
Where 𝜑! is the excitatory synaptic flux generated in one of these small groups, 𝜑!," are the 
excitatory synaptic fluxes in the small groups, and parameters  h𝐷! , 𝑁! , 𝐾!"l are time varying 
stochastic parameters analogous to damping factors, natural frequencies and coupling strengths 
of harmonic oscillators, then  
 
 

�̈�! + 𝐷!�̇�! + 𝑁!+𝜑! =-𝐾!"𝜑"
"

11 

 
When driven by diffuse white noise of wide bandwidth 𝑊,  the field has eigenmodes with 
frequencies, 𝑀!, and damping factors 𝒟!. If total energy is 𝑈, and 𝑈! is the energy of the 𝑖 − 𝑡ℎ 
mode., then the entropy of the 𝑖 − 𝑡ℎ mode is 
 

𝜎! = s
𝑈!
𝑈t ln s

𝑈!
𝑈t 12 

   
 
Applying these terms to the Gibbs equation for free energy, 
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𝐹 = 𝑈 − 𝜏-𝜎! 13 
 
 
where 𝐹 is again free energy, and 𝜏 is a constant that scales the average entropic energy per 
mode. This is the thermodynamic equivalent to equations (1) and (2). Free energy reaches 
absolute minimum when energy is equipartitioned between resonant modes, and entropy is thus 
maximized. Where all 𝑀! are small compared to 𝑊 equipartition of energy requires all 𝒟! are 
equal.2 
 
How spatial eigenmode coupling and construction of Markov blankets can arise follows simply 
as departures of synaptic connectivity from the antenatal near-equilibrium case. Figure 3 shows 
the four ways that changes in synaptic flux (and subsequent synaptic consolidation) could occur.  
 
Top row: symmetric exchange of synaptic flux between groups of excitatory cells. Excitatory 
flux exchanges are in phase with opposite excitatory cells, so that zero-lag synchronous 
oscillation is sustained. Flux dissipation is minimal. This corresponds to the antenatal state, and, 
with subsequent strengthening of connections, to postnatal formation of spatial eigenmodes. 
 
Second row: symmetric exchange of excitatory synaptic flux is directed to opposite inhibitory 
cells, so that excitatory flux is received in anti-phase to the opposite inhibitory pulse activity, 
thus suppressing oscillation if sufficiently strong. Flux dissipation is maximal, and perturbation 
is minimized. Each excitatory group cancels activity in the other if each group has predicted the 
other with zero-error, in which case they also remain in zero-lag synchrony. The zero-error case 
can be decomposed into twin unidirectional flows of the third, cross-inhibition, type. 
 
Third row: asymmetric exchange of excitatory synaptic flux directed to opposite inhibitory cells, 
so that one excitatory group is able to suppress oscillation in the other, producing cross-damping 
of synchronous eigenmodes. 
 
Fourth row: asymmetric exchange of excitatory flux between excitatory groups, with conduction 
delay, permitting self-exciting chains and the “winnerless synaptic competition” (Rabinovich et 
al. 2008) required for heteroclinic neural networks.  
 
 
 
 
 

 
2 The approach to equality of 𝒟!  in alert electrocorticogram has been shown using 
autocorrelation analysis (Wright et al. 1990).  
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Figure 3. Four elementary types of synaptic flux exchange in the perturbed neural field. Left 
column: consequence of the type of flux exchange. Middle column: Light grey squares 
indicate small groups of excitatory neurons, dark squares small groups of inhibitory neurons. 
Arrows indicate strength and direction of synaptic flux. Right column: an approximation of 
induced cross-correlation of excitatory pulse densities. 
 
 
The second, third, and fourth rows all introduce increasingly complicated lag correlation terms 
into 𝐶 of equation (1,1a,1b), and increasing 𝑘 in equation (2).  How such connection 
modifications can be embodied within mesoscopic anatomy is next described.  
 
 
4.3 The anatomical embodiment of postnatal synaptic evolution 
 
Figure 4 shows changes from antenatal connectivity to meet postnatal conditions. It is notable 
that as these synaptic changes are induced, because excitatory neurons are always intimately 
entangled with inhibitory cells, all four types involve only local shifts in synaptic connections, 
and could therefore take place with relatively high metabolic efficiency. This helps explain how 
the energy homeostasis of entire neurons can be closely linked to the generation of specific 
synapses, since small local changes in connectivity, obeying the STD, STP and BCM rules at 
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microscale, can have major effects on synchrony and thus metabolic demand throughout the 
neuron soma. 
 
Mesoanatomical units can become stabilised by the development of zero-error connectivity at 
patch cell connections to local cells, replacing antenatal zero-lag synchronous connections, thus 
moving toward construction of a Markov blanket. Concurrently, cross-inhibition and lag 
excitation connections within each local map can develop as temporal and spatial frequency 
preferences become tuned, giving rise to groups of excitatory cells arranged in contrasting, 
anisotropic, orthogonal systems that, by interacting through common inhibitory cell neighbours, 
couple spatial eigenmodes, while lag excitation orchestrates time sequencing of the eigenmode 
switching. Cross-correlations must now involve more complicated lag terms, with increasing 
dimension of information storage. Corollary to these adaptations, all local excitatory cells can 
further adapt their connections to maximize their co-synchrony, eliminating some of the 
noisiness of the antenatal connectivity that developed in the presence of diffuse noisy inputs, 
raising model likelihood to match increasing model dimension, and in so doing actively 
interpolate values by smoothing of surrounding connectivity by joint synchrony. 
   
As these changes take place the mesoanatomical unit continues to respond with synchrony to 
diffuse noise in the global field – so that unless specifically engaged by structured inputs the unit 
sends only low information signals to other units. The asymptotic limit of learning can be 
approached with the zero-error couplings increasingly acting to stabilize activity – but each unit 
will become perturbed when local and global signals are asymmetric so that inputs convey high 
surprisal. 
 
  

 
 
 
Figure 4. Evolution of synaptic connections in the antenatal scaffold following the 
introduction of structured postnatal inputs. 
Left:  Zero-error connections develop between patch and local cells. 
Middle: Radial and circumferential zones, shown in amber and cyan, emerge as local cells 
become tuned to low temporal frequency, and high temporal frequency preferences 
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respectively. Anisotropic unidirectional monosynaptic cross-inhibition and lag-excitation 
couplings develop, mediating the dynamics of coupled spatial eigenmodes.  
Right: Local response preferences are smoothed by local interactions - shown as increased 
continuity of the blue and amber zones. Bidirectional monosynaptic connections mediating 
increased and interpolated patterns of synchrony increase as  random connections are 
eliminated.     
 
 
 

 5. Emergent unlimited associations and generativity  
 
5.1 Interareal exchanges and the generation of possibilities 
 
The overlap of many mesoanatomical units permits their merging into larger and larger 
ensembles, always in accord with the minimizations of equations (1) and (2). These larger 
systems we term “assemblies” borrowing Hebb’s terminology for “cell assemblies”.  This can 
develop by a process of enclosure, in which smaller component assemblies become ringed with 
enclosing chains of zero-error connections, while the enclosed units can furnish ever more 
complicated patterns of eigenmode coupling. This can take place by the generation of zero-error 
types of connection between chains of patch cells. 
 
Transmissions to and from the growing assemblies can propagate rapidly throughout the cortex, 
via cortico-cortical fibres - resulting in a combinatorial explosion of image superpositions, from 
cortical areas 𝑃5 , 𝑃6 , 𝑃7,  to any given area, 𝑃8 
 

𝑃5 + 𝑃6 + 𝑃7 +⋯ → 𝑃8 14 
 

 
With subsequent lateral propagation into local maps,  
 
 

𝑃8 → J𝑝8 = ±𝑝-
(𝑃8 − 𝑝())

|𝑃8 − 𝑝(|)&.
+ 𝑝(N 15 

 
Most assemblies and sequences will be transient, but those that minimize free energy will persist, 
progressing through the three separate time scales of connection formation of equation (4), 
ultimately resulting in fusions cortex-wide. 
 
 
5.2 Subsequent evolutionary selection of assemblies and innovative outcomes 
 
We can now turn consideration toward the role of preferred states in application of the free 
energy principle. In a recent review Tucker and Lu (2023) describe the functional significance of 
the anatomical work of Barbas and colleagues, (Barbas, 1986, Barbas & Rempel-Clower, 1997, 
García-Cabezas et al., 2019) revealing the pathways of migration of cells from the embryogenic 
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paleo- and archi- cortex, that generate the dorsal and ventral divisions of the neocortex, and form 
a central core of paleo- and archi-cortex with radial neocortical areas. This work emphasises the 
rich interactions of all neocortical areas with limbic, sensory and motor systems, including 
attentional mechanisms, and Tucker and Lu relate this structure to differences in dorsal and 
ventral systems of the role of surprisal and prediction error minimization, depending on the level 
in the hierarchy of information flow. It is within such a global system that we envisage the 
creation and merging of assemblies taking place.   
 
The left side of Figure 5 shows how the initial assemblies can undergo merging into larger 
conglomerates, by enclosing a number of assemblies within larger rings of zero-error 
connections among patch cells. 
  
The right side of Figure 5  represents, as a Venn diagram, how the self-assembly of synaptic 
connectivity, excited by superpositions of inputs can ultimately result in collective assemblies 
capable of generative cognition. 
 
The right-hand facing arrows show by their origins and arrow heads the initiation of assemblies 
and their termination within the subsets F, P, B, and R. 
 
Assemblies arising in F (Failed) comprise: 
(a) all those that do not meet the demand for organized zero-error connections and coupled 

eigenmodes satisfying the matching of forward and backward signals (equation 10) required 
for continuing self-stabilisation by gradient descent in free energy, or 

(b) cannot link with others into configurations surrounded by zero-error connections also 
satisfying equation (10) at larger scale, or 

(c)  require increasing external energy to achieve transition into a configurations meeting (a) or 
(b) when such inputs are not available  

 
All these must dissipate under competitive pressure from other assemblies. 
 
Assemblies arising in P (Possible) are those that meet the primary requirements not attained by 
those in set F. However, they too will dissipate if they are unable to form associations based 
upon sensory preferred states, with assemblies falling in the B (Behavioural) set. This requires 
that the assembly must include components potentially capable of generating actions, either 
overt, or through internal adjustments of attention that acquire linkage with motor expression and 
overt behaviour, without which, they too, will dissipate under competitive pressures for want of a 
path for forward evolution. Innate generated actions must include escape from averse stimuli and 
approach to the pleasurable, and thus are the motor equivalent of sensory preferred states.  
 
But to persist toward permanency, assemblies must further gain access to R (Reinforcement). 
That is, they must produce behaviours (including cognitive operations) that are consistent with 
innate limbic and subcortical components in reinforcement of behaviour.  
 
Reinforcement pathways that can be artificially activated during intracranial self-stimulation 
(Olds and Milner,1954) and are mediated by dopaminergic and related pathways (Wightman and 
Robinson, 2002), exert diffuse effects cortex-wide (Wright,1973 ). They are concerned with 
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cortical activation and the driving of motor behaviour, and also modulate synaptic consolidation 
(Pawlack and Kerr 2008, Shindou et al., 2019), thus strengthening all synapses recently active, 
even in widely distributed assemblies. These R-actions, too, can be considered as a part of the 
“preferred states” ensemble of the organism, but are not simply equivalent to the action of hard-
wired sensory and pain receptors. They introduce the capacity for internally generated 
designation of current sensory states as “preferred”, by designating certain states as more salient 
than others. As assemblies are added to the inner set by reaching R, they can expand the 
membership of the R, B, and P sets, (indicated by the dotted right-to-left red arrows at the 
boundaries of the sets), increasing the available assembles upon which further expansion can 
take place . 
 

 
 
Figure 5. The continuing evolution of synaptic connections into large-scale functional 
organization. 
Left. Enclosure and Interdigitation of progressively greater cortical areas by zero-error 
connections – red zero-error connections enclose smaller units in overlapping networks of 
previously formed zero-error enclosures, shown in blue, yellow and green. 
Right. Stages of selection or competitive dissipation, defined by the subsets F, P, B, and R.  
 
 
Overall, then, the system can find structure within its inner world as it moves towards the 
learning asymptote, and has an unbounded capacity for innovation – unlimited association – 
within its lifetime.  
 

6 Conclusion 

The same relatively simple model of neuronal and synaptic dynamics has been applied 
throughout the antenatal and postnatal stages of development. The wide range of features of 
mesocortical anatomy that are accounted for have been mentioned in preceding sections, and the 
free energy principle is obeyed at all stages and scales. We have specified the stages of outcome 
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in a motor and reinforcement-related evolution, and shown how this may lead to unlimited 
association, or generativity.  

 

The development of a map of the external world goes through stages from simple to more 
complex. The early embryonic self-organisation maps the general decline of cross-correlation in 
space and time of the external world onto the general decline of cross-correlation of synchrony 
among cortical neurons, forming a scaffold for representation of elementary spatiotemporal 
images. The scaffold acts as position holder, so that as further cross connections are added, the 
partial correlations of stimuli (and actions) in space and time maintain mutual consistency. As 
more highly structured signals reach cortex in postnatal life, the initial framework of simple 
synchronous connections provides a starting point, from which further modifications of synaptic 
connectivity can take place by simple local transfers of synaptic connectivity in a metabolically 
efficient fashion, and in accord with the neurons’ homeostatic principle. Via gradient descent in 
free energy, the attaining and sustaining of a stable state, is possible both locally and globally. 
Implicit in this self-stabilization is also the retention of sensitivity to surprise required in realistic 
learning short of the theoretical asymptote, and also the means of minimizing unwanted cross-
talk among trained units.  

The elimination of random connections and ongoing smoothing of connections by synchrony acts 
as an interpolative and anticipatory process, offering a best-prediction of further modifications 
that may be required as learning progresses.  

Further quantitative development of this concept in rigorous terms of the free energy principle is 
possible, but beyond our scope. Such a quantitative approach might consider for example, the 
provision of activation energy by driving from subcortical activation and attention that might 
bring about fusion of initially rather unlikely large assemblies – an analogue for sustained 
thought. Replication in simulation of more detailed learning, taking advantage of the properties 
of the scaffold and the relatively simple and restricted form of local synaptic updating, seems not 
beyond practicability. 
 
Our proposal must face the test of integration with detailed synaptic and cellular physiology. 
Similar synaptic modifications minimizing prediction errors, detecting surprisal, and co-
ordinating interactions can operate equally well via the topographic interareal (cortico-cortical) 
projections, so an integration between mesoscale and whole brain dynamics seems possible.  
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