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Chaos and graphics
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Abstract

It is a major source of contention in brain dynamics as to whether the electrical rhythms of the brain show signs of

chaos. Here we discuss evidence for the existence of chaos in a theory of brain electrical activity and provide unique

depictions of the dynamics of this model.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Perhaps the most often asked question of researchers

in brain dynamics over the past decade has been—‘‘is

there chaos in the brain?’’, with this very question the

subject of serious experimental investigation over the

past few years [1]. However, the development of novel

time series analysis techniques and their application to

experimentally obtained time series have provided us

with overall equivocal results, with many questions still

remaining unresolved.

Alongside these experimental endeavours has been the

immense corpus of research due to Walter Freeman and

colleagues over the past half-century [2]. Based on both

his experimental and theoretical studies of the mamma-

lian olfactory system Freeman has suggested that chaos

is the very property which allows perception to take

place and gives brains the flexibility to rapidly respond

in a coherent manner to perceptual stimuli [3].

Freeman’s repeated exhortations of the existence of

chaos in the brain (as reflected by the existence of chaos

in its electrical dynamics) unfortunately has, up until

recently, received scant theoretical support, with other

existing theories of the electroencephalogram (EEG)

either not showing chaos or being unable to do so

because of the details of their mathematical construction

[4–7].

We have recently shown that chaos exists in Liley’s

theory of the electroencephalogram [8,9] and that this

chaos is widespread and extensive under parametric

variation [10]. In this paper we show examples of the

chaotic attractors generated by the system and also show

an example of the parameter set which supports chaos.

2. The model

The general theory of the electroencephalogram

developed by Liley leads to a mathematical model

describing the behaviour of two coupled populations of

neurones: excitatory (being approximately representa-

tive of the pyramidal neurones of neocortex) and

inhibitory (being approximately representative of the

interneurones of neocortex). The scale of modelling here

is approximately that of a cortical macrocolumn, which

is a small volume of neocortex containing approximately

*Corresponding author. Tel.: +61-3-9214-8812; fax: +61-

9819-0856.

E-mail addresses: pbourke@swin.edu.au (P.D. Bourke),

dliley@swin.edu.au (D.T.J. Liley), pcadusch@swin.edu.au

(P.J. Cadusch).

URLs: http://astronomy.swin.edu.au/pbourke, http://

marr.bsee.swin.edu.au.

0097-8493/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 7 - 8 4 9 3 ( 0 2 ) 0 0 1 8 3 - 8



105 neurones. Each of the two modelled populations is

connected to the other population and each population

feeds back onto itself in either a mutually excitatory (for

the excitatory population) or mutually inhibitory (for

the inhibitory population) fashion. Both modelled

populations have external excitatory and inhibitory

inputs. Inputs to each population, whether from

external sources, or from the other population, are

modelled based on the dynamics of fast-acting synapses.

The mean soma membrane potential of the excitatory

population (he) is directly related to the local field

potential of the neuronal mass, which overwhelmingly

dominates the composition of the scalp-recorded elec-

troencephalogram (EEG) [11].

The model equations are:

te

dhe

dt
¼ ðher � heÞ þ

heeq � he

jheeq � herj
Iee þ

hieq � he

jhieq � herj
Iie; ð1Þ

ti
dhi

dt
¼ ðhir � hiÞ þ

heeq � hi

jheeq � hirj
Iei þ

hieq � hi

jhieq � hirj
Iii; ð2Þ

d2Iee

dt2
þ 2a

dIee

dt
þ a2Iee ¼ AaefNeeSeðheÞ þ peeg; ð3Þ

d2Iie

dt2
þ 2b

dIie

dt
þ b2Iie ¼ BbefNieSiðhiÞ þ pieg; ð4Þ

d2Iei

dt2
þ 2a

dIei

dt
þ a2Iei ¼ AaefNeiSeðheÞ þ peig; ð5Þ

d2Iii

dt2
þ 2b

dIii

dt
þ b2Iii ¼ BbefNiiSiðhiÞ þ piig; ð6Þ

where

SqðhqÞ ¼ qmax=ð1þ expð�
ffiffiffi
2

p
ðhq � yqÞ=sqÞÞ; q ¼ e; i:

Eqs. (1) and (2) describe he and hi; the mean soma

membrane potentials of the excitatory and inhibitory

populations, respectively. Eqs. (3)–(6) describe the effec-

tive ‘‘synaptic’’ activity of type j acting upon neurones of

type k given by Ijk: The S functions represent the

conversion of the membrane potential of the respective

population into an equivalent mean firing rate. For

further manipulation and for numerical solution we

rewrite these equations as a set of ten coupled nonlinear

first-order ordinary differential equations.

For a complete discussion of the equations and the

methods used to solve them, as well as a further

discussion about the work we present herein, please

see Dafilis et al. [10]. A further discussion of Liley’s

theory may be found in Liley et al. [9], which includes a

detailed derivation of the theory, and a comprehensive

discussion of the theory and its predictions. A somewhat

abbreviated version is available in Liley et al. [8].

3. Results and visualisations

During the course of our investigations into the

dynamical complexity of the model we found solutions

which had complicated temporal behaviour including

aperiodic oscillations. We surmised that these model

solutions were indeed chaotic, and in order to ascertain

this we used the algorithm of Christiansen and Rugh [12]

to determine the largest Lyapunov exponent for the

system. The presence of a positive largest Lyapunov

exponent for the system is confirmation of the chaotic

nature of the system’s behaviour.

Initial representations of the surfaces and the attrac-

tors were first determined using locally developed

software based on the OpenGL standard, which

provided for interactive manipulation of the graphics

with respect to orientation and preliminary colourings.

Subsequent to the selection of informative orientations

and colourings the graphics were prepared for rendering

using locally developed software to create the requisite

representations. Raytracings were performed using

POV-Ray, one of a number of freely available ray

tracing packages.

Figs 1 and 2 illustrate two different chaotic attractors

from the system for two unique sets of parameters. The

attractors shown are created from time series of the he

variable of the system, as he is directly proportional to

the electrical activity recorded by electrodes placed on

the scalp. Attractors were time delay embedded using an

embedding delay corresponding approximately to that

of the location of the first zero of the autocorrelation

function for each time series. Each time series is 100 s

long, with the initial 5 s of the simulation discarded to

remove any transient effects. Time series were generated

at a resolution of 1 point/ms (yielding a time series of

overall length 100,000 points) using the CVODE [13]

integrator option of XPPAUT [14] (a dynamical systems

simulation package), with time delay embeddings and

autocorrelations obtained using software from the

TISEAN package [15].

One of the undisputed objectives of effective scientific

visualisation is to provide researchers with an enhanced

understanding of the dynamics of the processes they are

interested in visualising. Researchers typically make use

of simple geometries, efficient renderings, and stark

colours. In this way, the details of the visualisation

process and the myriad opportunities it provides for

depicting the data do not obscure and overwhelm the

detail of the data to be visualised.

On the other hand, a counterpoint to the above would

be to suggest that whilst the purpose of an effective

scientific visualisation is to present the data in a way

such that the science behind the image is more easily

interpreted, an effective visualisation should also look

good, and be visually appealing. Empirically one may

suggest that making a visualisation more attractive
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Fig. 2. Two different views of another chaotic attractor. Note how the rendering provides a perspective on the interleaving of the

attractor’s sheets and folds.

Fig. 1. Two complementary views of a chaotic attractor from the model, shown from two different perspectives. Note the shadowing

and how it provides an enhanced sense of the depth of the attractor.
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Fig. 3. Two different views of the parameter space plane of the model, with the largest Lyapunov exponent of the system as the

dependent variable and the external excitatory input pulse density to the excitatory (pee) and inhibitory (pei) populations as the

independent variables. Model parameters and bounds: pee ¼ 9–12:25 ms�1; pei ¼ 7:5–10:75 ms�1; a ¼ 0:49 ms�1; b ¼ 0:592 ms�1; A ¼
0:81 mV; B ¼ 4:85 mV; emax ¼ imax ¼ 0:5 ms�1; heeq ¼ 45 mV; her ¼ hir ¼ �70 mV; hieq ¼ �90 mV; Nee ¼ Nei ¼ 3034; Nie ¼ Nii ¼
536; pie ¼ pii ¼ 0 ms�1; se ¼ si ¼ 5 mV; ye ¼ yi ¼ �50 mV; te ¼ 9 ms; ti ¼ 39 ms: Choosing a ðpee; peiÞ pair from within this plane,

along with the specified parameter set, and numerically solving the model equations, will lead to a variety of different attractors, from

point attractor to limit cycle to chaotic. Values of pee and pei outside of the bounds indicated above will also lead to chaos—for a

depiction of the complete parameter space which supports chaos for this parameter set, see [10].
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makes it more pleasant, and perhaps, easier to look at,

so the researcher may find it much easier to appreciate

and understand the visualisation and implicitly the

science underpinning the image.

It is primarily for these reasons that we have chosen

relatively sparse colour schemes and straightforward

raytracings—these selections make the data more

attractive and visually appealing, as well as enabling

greater insight into the overall structure of the data. This

is best illustrated by considering the effect the raytracing

provides by placing shadows on the attractor surfaces.

The shadows help to better represent the spatial extent

and dimension of the objects in the three-dimensional

space in which they are situated, with the uniform, pale

colourings helping to maintain a clear distinction

between the representation of the shadows and the

representation of the surface itself.

Each of the attractors has only one positive Lyapunov

exponent; it follows via the Kaplan–Yorke conjecture

[16] that the dimension of each of these attractors is

therefore larger than 2 but less than 3. Note how the

rendering provides a clear definition of the perspective

and shadowing of the model. This adds considerably to

an appreciation of how complicated the attractors, and

therefore the dynamics of the system are for different

sets of model parameters.

Fig. 3 complements Figs 1 and 2 by providing a

qualitative description of the dynamics of the model

under parametric variation of the two of the most

important model parameters: the external excitatory

pulse densities to the excitatory (pee) and inhibitory (pei)

neural model populations.

At many hundreds of thousands of locations in the

plane, we determined the largest Lyapunov exponent of

the system to determine whether the dynamics of the

system are chaotic for that particular combination of pee

and pei: As mentioned earlier, chaotic dynamics have a

positive largest Lyapunov exponent (LLE). Limit cycle

dynamics have a LLE of zero, and point attractor

dynamics have a LLE which is negative. The height of

the plane at a particular point is given by the LLE of the

attractor at that point.

The flat region of the plane is where limit cycle

dynamics are found. The elevated regions of the plane,

with their characteristic puckered and wrinkled appear-

ance, are where chaotic dynamics, like that shown in

Figs 1 and 2, arise in parameter space.

It is evident that, to some degree, the distribution of

chaotic dynamics in this parameter space has some self-

similarity, and that it is solid in parameter space. We

have shown that chaos within this parameter space has

structure consistent with that of a fat fractal, which is an

object with structure at all scales which has positive

measure.

Note how the relatively neutral colour palette and the

judicious use of light sources and their positioning

allows the nuances and the fine details of the distribution

of heights in the plane to be drawn out, without

obscuring the limit cycle regions of the plane or casting

inappropriate shadows.

This rendering, with its homogeneous palette, is not

able to clearly differentiate to the viewer the diversity of

the ‘‘heights’’ in the plane, as would a colouring where

the colour at each point is proportional to the point’s

effective height. Such an image would essentially be two-

dimensional, with the colouring at each location

representative of the third dimension. We consider

Fig. 3 to be complementary to such a depiction and

not in direct competition with such a depiction. Fig. 3

provides a much better understanding of the structure of

the parameter space region as opposed to a coloured

representation, as this representation allows one to focus

on how the dynamics are structured without having the

obscuring effect of having to interpret the colour of the

image at each location. Arguably the three-dimensional

representation of the data set gives an enhanced aesthetic

which makes interpreting and understanding the struc-

ture of chaos within the parameter space less difficult.

The complexity of the structure within this plane is

without question, as are its fat fractal characteristics.

4. Conclusion

We have presented evidence for complicated dynamics

in a model of brain electrical activity and further have

illustrated these dynamics using a novel method.

It is evident that an appreciation of the dynamics of

the model are considerably enhanced by a judicious

choice of colour scheme and rendering method, and

that, with the right choices, a depiction of the dynamics

can be made which is not only aesthetically pleasing but

also visually informative.
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