Happy Numbers

Written by Paul Bourke
December 2017


The happy status of a number is determined by repeatedly replacing the number by the sum of the square of its digits. If this sequence ends in a 1 then the number is said to be happy, if it never reaches 1 it is unhappy.

1 is obviously a happy number. The next happy number is 7. The sequence that determines that state is 7, 49 (72), 97 (42+92), 130 (92+72), 10 (12+32), 1

The happy numbers less than 10,000 are as follows, there are 1442 of them. 1 7 10 13 19 23 28 31 32 44 49 68 70 79 82 86 91 94 97 100 103 109 129 130 133 139 167 176 188 190 192 193 203 208 219 226 230 236 239 262 263 280 291 293 301 302 310 313 319 320 326 329 331 338 356 362 365 367 368 376 379 383 386 391 392 397 404 409 440 446 464 469 478 487 490 496 536 556 563 565 566 608 617 622 623 632 635 637 638 644 649 653 655 656 665 671 673 680 683 694 700 709 716 736 739 748 761 763 784 790 793 802 806 818 820 833 836 847 860 863 874 881 888 899 901 904 907 910 912 913 921 923 931 932 937 940 946 964 970 973 989 998 1000 1003 1009 1029 1030 1033 1039 1067 1076 1088 1090 1092 1093 1112 1114 1115 1121 1122 1125 1128 1141 1148 1151 1152 1158 1177 1182 1184 1185 1188 1209 1211 1212 1215 1218 1221 1222 1233 1247 1251 1257 1258 1274 1275 1277 1281 1285 1288 1290 1299 1300 1303 1309 1323 1330 1332 1333 1335 1337 1339 1353 1366 1373 1390 1393 1411 1418 1427 1444 1447 1448 1457 1472 1474 1475 1478 1481 1484 1487 1511 1512 1518 1521 1527 1528 1533 1547 1557 1572 1574 1575 1578 1581 1582 1587 1599 1607 1636 1663 1666 1670 1679 1697 1706 1717 1724 1725 1727 1733 1742 1744 1745 1748 1752 1754 1755 1758 1760 1769 1771 1772 1784 1785 1796 1808 1812 1814 1815 1818 1821 1825 1828 1841 1844 1847 1851 1852 1857 1874 1875 1880 1881 1882 1888 1900 1902 1903 1920 1929 1930 1933 1959 1967 1976 1992 1995 2003 2008 2019 2026 2030 2036 2039 2062 2063 2080 2091 2093 2109 2111 2112 2115 2118 2121 2122 2133 2147 2151 2157 2158 2174 2175 2177 2181 2185 2188 2190 2199 2206 2211 2212 2221 2224 2242 2245 2254 2257 2258 2260 2275 2285 2300 2306 2309 2313 2331 2333 2338 2339 2360 2369 2383 2390 2393 2396 2417 2422 2425 2448 2452 2455 2457 2458 2471 2475 2478 2484 2485 2487 2511 2517 2518 2524 2527 2528 2542 2545 2547 2548 2554 2555 2557 2568 2571 2572 2574 2575 2581 2582 2584 2586 2602 2603 2620 2630 2639 2658 2685 2693 2714 2715 2717 2725 2741 2745 2748 2751 2752 2754 2755 2771 2784 2800 2811 2815 2818 2825 2833 2844 2845 2847 2851 2852 2854 2856 2865 2874 2881 2899 2901 2903 2910 2919 2930 2933 2936 2963 2989 2991 2998 3001 3002 3010 3013 3019 3020 3026 3029 3031 3038 3056 3062 3065 3067 3068 3076 3079 3083 3086 3091 3092 3097 3100 3103 3109 3123 3130 3132 3133 3135 3137 3139 3153 3166 3173 3190 3193 3200 3206 3209 3213 3231 3233 3238 3239 3260 3269 3283 3290 3293 3296 3301 3308 3310 3312 3313 3315 3317 3319 3321 3323 3328 3329 3331 3332 3338 3346 3351 3355 3356 3364 3365 3367 3371 3376 3380 3382 3383 3391 3392 3436 3456 3463 3465 3466 3506 3513 3531 3535 3536 3546 3553 3560 3563 3564 3602 3605 3607 3608 3616 3620 3629 3634 3635 3637 3643 3645 3646 3650 3653 3654 3661 3664 3667 3670 3673 3676 3680 3689 3692 3698 3706 3709 3713 3731 3736 3760 3763 3766 3779 3789 3790 3797 3798 3803 3806 3823 3830 3832 3833 3860 3869 3879 3896 3897 3901 3902 3907 3910 3913 3920 3923 3926 3931 3932 3962 3968 3970 3977 3978 3986 3987 4004 4009 4040 4046 4064 4069 4078 4087 4090 4096 4111 4118 4127 4144 4147 4148 4157 4172 4174 4175 4178 4181 4184 4187 4217 4222 4225 4248 4252 4255 4257 4258 4271 4275 4278 4284 4285 4287 4336 4356 4363 4365 4366 4400 4406 4414 4417 4418 4428 4441 4447 4449 4455 4460 4471 4474 4477 4481 4482 4494 4517 4522 4525 4527 4528 4536 4545 4552 4554 4555 4558 4563 4571 4572 4577 4582 4585 4599 4604 4609 4633 4635 4636 4640 4653 4663 4690 4708 4712 4714 4715 4718 4721 4725 4728 4741 4744 4747 4751 4752 4757 4774 4775 4780 4781 4782 4788 4807 4811 4814 4817 4824 4825 4827 4841 4842 4852 4855 4870 4871 4872 4878 4887 4888 4900 4906 4944 4959 4960 4995 5036 5056 5063 5065 5066 5111 5112 5118 5121 5127 5128 5133 5147 5157 5172 5174 5175 5178 5181 5182 5187 5199 5211 5217 5218 5224 5227 5228 5242 5245 5247 5248 5254 5255 5257 5268 5271 5272 5274 5275 5281 5282 5284 5286 5306 5313 5331 5335 5336 5346 5353 5360 5363 5364 5417 5422 5425 5427 5428 5436 5445 5452 5454 5455 5458 5463 5471 5472 5477 5482 5485 5499 5506 5517 5524 5525 5527 5533 5542 5544 5545 5548 5552 5554 5555 5558 5560 5569 5571 5572 5584 5585 5596 5603 5605 5606 5628 5630 5633 5634 5643 5650 5659 5660 5666 5682 5695 5712 5714 5715 5718 5721 5722 5724 5725 5741 5742 5747 5751 5752 5774 5781 5789 5798 5799 5811 5812 5817 5821 5822 5824 5826 5842 5845 5854 5855 5862 5871 5879 5897 5919 5949 5956 5965 5978 5979 5987 5991 5994 5997 6008 6017 6022 6023 6032 6035 6037 6038 6044 6049 6053 6055 6056 6065 6071 6073 6080 6083 6094 6107 6136 6163 6166 6170 6179 6197 6202 6203 6220 6230 6239 6258 6285 6293 6302 6305 6307 6308 6316 6320 6329 6334 6335 6337 6343 6345 6346 6350 6353 6354 6361 6364 6367 6370 6373 6376 6380 6389 6392 6398 6404 6409 6433 6435 6436 6440 6453 6463 6490 6503 6505 6506 6528 6530 6533 6534 6543 6550 6559 6560 6566 6582 6595 6605 6613 6616 6631 6634 6637 6643 6650 6656 6661 6665 6673 6701 6703 6710 6719 6730 6733 6736 6763 6789 6791 6798 6800 6803 6825 6830 6839 6852 6879 6893 6897 6899 6904 6917 6923 6932 6938 6940 6955 6971 6978 6983 6987 6989 6998 7000 7009 7016 7036 7039 7048 7061 7063 7084 7090 7093 7106 7117 7124 7125 7127 7133 7142 7144 7145 7148 7152 7154 7155 7158 7160 7169 7171 7172 7184 7185 7196 7214 7215 7217 7225 7241 7245 7248 7251 7252 7254 7255 7271 7284 7306 7309 7313 7331 7336 7360 7363 7366 7379 7389 7390 7397 7398 7408 7412 7414 7415 7418 7421 7425 7428 7441 7444 7447 7451 7452 7457 7474 7475 7480 7481 7482 7488 7512 7514 7515 7518 7521 7522 7524 7525 7541 7542 7547 7551 7552 7574 7581 7589 7598 7599 7601 7603 7610 7619 7630 7633 7636 7663 7689 7691 7698 7711 7712 7721 7739 7744 7745 7754 7788 7793 7804 7814 7815 7824 7839 7840 7841 7842 7848 7851 7859 7869 7878 7884 7887 7893 7895 7896 7900 7903 7916 7930 7937 7938 7958 7959 7961 7968 7973 7983 7985 7986 7995 8002 8006 8018 8020 8033 8036 8047 8060 8063 8074 8081 8088 8099 8108 8112 8114 8115 8118 8121 8125 8128 8141 8144 8147 8151 8152 8157 8174 8175 8180 8181 8182 8188 8200 8211 8215 8218 8225 8233 8244 8245 8247 8251 8252 8254 8256 8265 8274 8281 8299 8303 8306 8323 8330 8332 8333 8360 8369 8379 8396 8397 8407 8411 8414 8417 8424 8425 8427 8441 8442 8452 8455 8470 8471 8472 8478 8487 8488 8511 8512 8517 8521 8522 8524 8526 8542 8545 8554 8555 8562 8571 8579 8597 8600 8603 8625 8630 8639 8652 8679 8693 8697 8699 8704 8714 8715 8724 8739 8740 8741 8742 8748 8751 8759 8769 8778 8784 8787 8793 8795 8796 8801 8808 8810 8811 8812 8818 8821 8847 8848 8874 8877 8880 8881 8884 8909 8929 8936 8937 8957 8963 8967 8969 8973 8975 8976 8990 8992 8996 9001 9004 9007 9010 9012 9013 9021 9023 9031 9032 9037 9040 9046 9064 9070 9073 9089 9098 9100 9102 9103 9120 9129 9130 9133 9159 9167 9176 9192 9195 9201 9203 9210 9219 9230 9233 9236 9263 9289 9291 9298 9301 9302 9307 9310 9313 9320 9323 9326 9331 9332 9362 9368 9370 9377 9378 9386 9387 9400 9406 9444 9459 9460 9495 9519 9549 9556 9565 9578 9579 9587 9591 9594 9597 9604 9617 9623 9632 9638 9640 9655 9671 9678 9683 9687 9689 9698 9700 9703 9716 9730 9737 9738 9758 9759 9761 9768 9773 9783 9785 9786 9795 9809 9829 9836 9837 9857 9863 9867 9869 9873 9875 9876 9890 9892 9896 9908 9912 9915 9921 9928 9945 9951 9954 9957 9968 9975 9980 9982 9986 10000

There are a few obvious things to be noted from the definition. For example, the order of the digits does not matter, so since 9908 is happy then so is 8099, 998, 989, 899, 9809, 9089. Also, zeros don't play any part in the happiness. So since 9001 is happy, so is 901, 109, 19, 91. It turns out that the sequence for all unhappy numbers falls into the attractor repeating sequences 4, 16, 37, 58, 89, 145, 42, 20.

long IsHappy(long n)
{
   long i;
   long digit,sum;

   for (i=0;i<NMAX;i++) {

      sum = 0;
      while (n != 0) {
         digit = n % 10;
         sum += digit*digit;
         n /= 10;
      }
      if (sum <= 1)
         return(i);
		
      n = sum;
   }

   return(NMAX);
}

The concept can be extended to higher powers. The happy numbers (only 101 of them) under 10,000 for a third power are 1 10 100 112 121 211 778 787 877 1000 1012 1021 1102 1120 1189 1198 1201 1210 1234 1243 1324 1342 1423 1432 1579 1597 1759 1795 1819 1891 1918 1957 1975 1981 2011 2101 2110 2134 2143 2314 2341 2413 2431 2779 2797 2977 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321 5179 5197 5719 5791 5917 5971 7078 7087 7159 7195 7279 7297 7519 7591 7708 7729 7780 7792 7807 7870 7915 7927 7951 7972 8077 8119 8191 8707 8770 8911 9118 9157 9175 9181 9277 9517 9571 9715 9727 9751 9772 9811 10000. In general as the power increases the frequency of happy numbers decreases.

Another variation is to compute the lucky numbers for other bases, base 10 being used above. For base 2 and 4 all numbers are lucky, they are therefore called lucky bases. For base 3 the happy or unhappy status is the same as the even or odd status.