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The sphinx tile, a hexiamond composed of six equilateral triangles in the shape of a sphinx, has
interesting and complex tiling behavior due to its chirality and asymmetry. Sphinx-shaped regions
(“sphinx frames”) can be tiled in quasicrystalline “rep-tiles” when the order is 2n, but also in more
complex and disordered tilings within sphinx boundaries of all orders. For frames up to order 13
we carry out exact enumeration using accelerated backtracking, seam, and dangler algorithms to find
the number of tilings, while for larger frames we introduce a Monte Carlo (MC) method to create
randomized tilings. Key to the latter is the identification of fundamental shapes (polyads) that have
multiple tilings and allow a rejection-free MC move once the polyad is identified. We also introduce
an Ising-like chiral interaction energy between neighboring sphinx tiles and study how the system
behaves as a function of temperature; at low temperatures, chiral ordering is found.

Introduction. The study of tilings has been a funda-
mental and fertile part of statistical mechanics since at
least 1937 with the introduction of the dimer tiling [1],
which was solved exactly for the square lattice in 1961
[2, 3]. Dimer tilings are related to Pfaffian solutions of
the Ising model [4] and have reappeared in many guises
[5–9]. When the region tiled is the shape of an Aztec
diamond, vast simplifications in the enumeration occur,
phase ordering emerges, and the beautiful Arctic Circle
theorem obtains [10–13].

Interest in more complex tiles formed of connected
polygons was reignited by Golomb [14, 15], who in-
troduced “polyominoes” as generalizations of dominoes.
Polyominoes are composed of two or more squares con-
nected together—the shapes in the game Tetris are ex-
amples of tetrominoes. In statistical mechanics, poly-
ominoes are known as “lattice animals” and have been
studied extensively in relation to percolation, the Ising
model, and other problems. Tiles made of equilateral
triangles are called “polyiamonds” as a generalization
of diamonds [16]. When the number of triangles is six,
the shapes are called hexiamonds, and there are twelve
distinct configurations, all of which have been assigned
names [16, 17]. Here we consider just one of those hexia-
monds, the sphinx tile, illustrated in Fig. 1. The sphinx
has the interesting property that it has no symmetry and
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has an inherent chirality. When it is placed on a triangu-
lar lattice, there are twelve possible embeddings (states)
of a sphinx, six of each chirality, which we call left (“L”)
and right (“R”), depending on the location of the head
of the sphinx when oriented horizontally (Fig. 1.) The
shape of the sphinx leads to frustration as seen in prob-
lems of packings and glasses.

FIG. 1. L-sphinxes (left) and R-sphinxes (right), showing the
six orientations of each.

In the past, the sphinx has garnered interest because
it is a so-called “rep-tile” (following Golomb) that can
be tiled by four smaller sphinxes, as in the order-2 tiling
in Fig. 2 [18]. This allows one to recursively create large
tilings with a self-similar or quasicrystalline form [19–22].
Quasicrystals have occurred in many contexts [23–25],
including the recent discovery of a planar tiling that uses
a single tile and its mirror image [26].

Here we are interested in enumerations of sphinx tilings
given a boundary (frame) which the sphinxes must fill
without leaving any spaces. We consider only bound-
ary frames being in the shape of a sphinx. In rep-tiles,
the number of possible tilings is just one, but for general
tilings of a sphinx frame, the number of tilings grows
rapidly with the order. Here order represents the num-
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FIG. 2. All sphinx tilings of order 1, 2 and 3. Here the 12
colors represent the 12 possible tile orientations as shown in
Fig. S2 in the Supplemental Material (SM).

ber of triangle edges on the tail end of the sphinx, and can
have values 1, 2, 3, . . . In fact, a frame in the shape of a
sphinx of any order can be tiled by elementary sphinxes,
a result that can be proven by a simple inductive argu-
ment. Such is not the case for many other frame shapes,
where only certain orders can be tiled by sphinxes, like
triangles (12, 24, 36, . . .) and regular hexagons (6, 8, 10,
. . .). Previously, sphinx tiles in sphinx frames have been
enumerated up to order 8 [27]. Here we extend that to
order 13.

Algorithms. For the enumerations of tilings of sphinx
frames up to order 7, we used a “backtracking” method,
where we proceed across the triangles of the frame in a
row-by-row manner and recursively go back to find other
tilings. This algorithm generates every possible complete
tiling, and as a consequence it is limited in terms of the
order it can handle. To increase the speed of the algo-
rithm and reduce memory, we describe both the frame
and tiles by 64-bit binary integers, where each bit repre-
sents the state of an underlying grid triangle.

For higher-order frames, we have developed techniques
to enumerate tilings without explicitly generating each of
them. First we describe our “seam method.” While the
sphinx frame itself has no symmetry, it does have a de-
composition into two symmetrical hemisphinxes (trape-
zoids), identical except for their orientation and connect-
ing edge. A seam starts at the sphinx-neck point and
meanders along sphinx-tile boundaries until it partitions
the base in the ratio 1:2, as shown in Fig. 3. To simplify
the enumeration, we only let the seam meander within a
single hemisphinx; we choose the right-hand hemisphinx
when the frame is oriented in the “canonical” state, as in
Fig. 3. In principle, the number of seams increases very
rapidly with the size of the sphinx; however, most seams
do not admit a tiling on both halves. Those that do ad-
mit a tiling are extremely rare and can be enumerated
individually. For order 8, for instance, the number of
“legal” seams is 1468 out of 8619612 possible meanders.
For each possible partition, we determine the number of
tilings of the two areas and multiply the two together,
and add all products to get the total number of tilings

for that seam. Finally, we sum over all possible seams. In
principle, this method allows one to generate all tilings
by convolution of the tilings from each side of the seams.

FIG. 3. Left: Illustration of the seam method, where the seam
is shown in heavy black. Enumerations of the two regions on
either side of the seam are shown in SM. Middle and right: A
complete tiling of the first 3 rows using the dangler method,
and the associated dangler shape (red sphinxes).

For n > 11, further improvements are necessary be-
cause of memory constraints in the above two methods.
Here we start with the top row as shown in Fig. 3. After
covering all triangles of a certain row r, we consider all
possible shapes built by the covered triangles of the next
two rows, but only accept those shapes that allow further
tiling of row r + 1. We describe each of these “dangler”
shapes by a binary representation, with one integer for
each of the two rows. Unlike with a standard backtrack-
ing method, we do not have to continue for each tiling.
We save a large amount of computing time, because in
most cases the number of danglers is much smaller than
the number of tilings.

With the dangler method, it takes less than a second
to calculate the number of sphinx tilings of an 8-sphinx,
and all results from our previous methods up to order 11
could be confirmed. Order 12 takes about 3 hours and
order 13 about 3 days using up to 6 cores on a desktop
computer. The bottleneck of the calculation is the nec-
essary amount of memory for saving the danglers, which
in practice limits this method to order 13. The dangler
method is much faster than the seam method, but it does
not explicitly produce all tilings, and is mainly useful for
enumeration. The seam method can be split into several
independent parts (corresponding to the different seams),
and has the advantage that tilings can be saved and used
for further study.
Results. The final enumeration results for the number

of tilings Nn from all three methods are listed in Table I
and have been posted on [28]. For n = 13, the number
of tilings is greater than 1030, highlighting the power of
our methods. The asymptotic behavior of Nn can be ex-
hibited by plotting its logarithm as a function of n2, the
number of sphinx tiles in an n-sphinx. This is shown in
Fig. 4. A straight line on this plot is the expected be-
havior based upon the dimer tiling solution [2, 3, 29] and
a lower bound [30], and that behavior is confirmed. The
data points (red circles) appear to show a periodicity of
3, such that sphinx frames of order 3k have more tilings
than expected when looking at the two previous orders;
we have no definitive explanation for this intriguing be-
havior. The slopes of these lines approach 0.425(2), im-
plying an effective entropy that grows, to leading order,
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TABLE I. Number of tilings of a sphinx frame of order n.

n tilings
1 1
2 1
3 4
4 16
5 153
6 71 838
7 5 965 398
8 2 614 508 085
9 9 822 629 511 079

10 28 751 930 151 895 611
11 162 231 215 752 303 027 270
12 32 813 942 272 624 544 838 651 213
13 1 257 159 787 425 487 037 702 548 758 466

FIG. 4. The log of the number of tilings Nn as function of
the square of the order n (n is shown in red).

as S = kB lnNn with Nn = exp(0.425n2) = σn2

where
σ = 1.53(1) and n2 is the area (see SM). Here we are
assuming that all configurations are equally likely (equal
energy), in which case the partition function is equal to
the total number of tilings.

In Fig. 5, we show the density of occurrence of the 36
suitable sphinx states (including each part of the sphinx)
on each triangle in the order-7 frame.

FIG. 5. The order-7 sphinx. Colors represent for each triangle
the number of the 36 different ways in which it is covered by
sphinx tiles as shown in Fig. S5, when the set of all order-
7 tilings is considered, where white represents the maximum
(36) and indigo represents the minimum occurrence (4).

We note that once low-order tilings have been identi-
fied, it is possible to carry out a general inflation or sub-

stitution process to generate higher-order sphinx tilings,
as a generalization of the rep-tile process. For example,
each of the 4 tilings of the 3-sphinx can be tiled with any
of the 16 tilings of order 4, yielding 262144 tilings of the
12-sphinx. These are, of course, an insignificant fraction
of the 3.28 · 1025 tilings of the 12-sphinx.
Types of sphinxes. We define a sphinx of left chiral-

ity (“L”) as one in which the “head” of the sphinx is on
the left-hand side, when the base of the sphinx is hori-
zontal and the sphinx is upright, and likewise for a right
(“R”) chirality sphinx; see Fig. 1. This designation is in-
dependent of the embedding on a lattice. We also define
“A” (“up”) and “V” (“down”) triangles, and A and V
sphinxes based on the direction of the head.

FIG. 6. Fundamental polyads of size 2, 3, 4, 4 (on left) and
size 6 (on right).

Polyads. We define a polyad of size n as a simply con-
nected polyiamond that consists of 6n triangular cells
and can be tiled by n sphinx tiles. The polyad is the
frame of the polyiamond, and does not refer to any spe-
cific tiling. Two polyads are considered equal if they can
be transformed into each other by rotation, reflection or
translation. Due to rotation or reflection, a polyad can
have up to 12 different states. Two tilings of a given
polyad are disjoint if there are no sphinx tiles in the same
position and orientation in the two tilings. Two sets of
tilings of the same polyad are disjoint if each tiling of
the first set is disjoint to each tiling of the second set. A
fundamental polyad has more than one tiling that can be
split into two disjoint sets of tilings. (Figs. 6, 7). Within
each set there may be tilings that are not disjoint from
each other (Fig. 8). On the other hand, both sets may
be split in further disjoint sets. However, we have found
only one fundamental polyad, the “mystical triode,” with
more than two mutually disjoint sets of tilings (Fig. 9).

A mirror reflection of a tiling of a symmetric frame can
produce a distinct tiling (see axially symmetric examples
in Figs. 6), and such polyads can be fundamental. The
smallest size where asymmetric fundamental polyads oc-
cur is 7 (Fig. 8). As we shall see below, fundamental
polyads will play a central role in our method to switch
from one tiling to another without re-tiling the whole
frame of the system.

All fundamental polyads up to size 6 were found ex-
haustively and their statistics are listed in table II. The
spectra of polyads in tilings of sphinx frames of order 5,
6 and partial results for order 7, are shown in Fig. 10.
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TABLE II. Polyads (frames) of size n = 1 to 6 and their properties. We also show in the third column the total number of
polyiamonds [31], with the last value an estimate based upon extrapolation.

n Name
Polyiamonds
with 6n cells
and no holes

Polyads
Polyad
tilings

Polyads with
more than
one tiling

Funda-
mental
polyads

Fund.
polyad
tilings

1 Monad 12 1 1 0 0 0
2 Dyad 3 226 46 47 1 1 2
3 Triad 1 484 738 1 868 1 893 25 1 2
4 Tetrad 753 060 469 98 733 100 687 1 940 2 4
5 Pentad 401 510 058 179 5 449 410 5 589 771 138 865 0 0
6 Hexad ≈ 2.3 · 1014 311 784 564 321 765 736 9 816 368 6 14

FIG. 7. Tilings of the 4 fundamental polyads of size 2, 3, 4, 4
(left) and the 14 tilings of the 6 fundamental hexads (right)

There are ten fundamental polyads of size 1 to 6, as
shown in Fig. 6. Each of these can be tiled in more than
one distinct way. We call the fundamental dyad (size 2)
“bowtie,” the fundamental triad (size 3) “erlenmeyer,”
and the two fundamental tetrads (size 4) “3 × 4 par-
allelogram” and “hourglass.” Fundamental monads and
pentads do not exist. Polyads of higher order are given
in the SM.

FIG. 8. A non-symmetric fundamental heptad (polyad of size
7) with 3 tilings. The first one is disjoint to the others (mean-
ing that no two tiles are in the same position), but tilings 2
and 3 are not disjoint to each other.

FIG. 9. The “mystical triode,” a 3-fold symmetric fundamen-
tal ennead (polyad of size 9) with 3 mutually disjoint tilings.

FIG. 10. Spectrum of fundamental polyads found in the
tilings of sphinx frames of orders 5, 6 and 7. Inset shows
a scaling plot of the number vs.

√
size/order, with a dashed

line connecting the measured data for size ≤ 21 to the two
points at size 48 and 49. The vertical scale is logarithmic
except for the point 0 which is included.

Monte Carlo method. Using the concept of fundamen-
tal polyads, we developed a Monte Carlo method to gen-
erate other tilings from a given tiling. In the simulation,
we pick one of the polyads randomly (weighting the larger
polyads with lower probability) and search for the occur-
rence of that particular polyad. If none is found, we try
a different polyad; otherwise, if more than one is found,
we pick one randomly and replace it with another tiling
of that fundamental polyad. A larger frame will typi-
cally include many fundamental polyads, and by going
through this process we can generate a large number of
different tilings. A typical tiling of a 23-sphinx is shown
in Fig. 11. For sphinx frames of order up to 6, we can
be guaranteed that all possible tilings can be generated
by the MC method, because in those cases we know all
the tilings, and we can create small sets of fundamental
polyads that are sufficient to generate all the rest start-
ing from a single tiling. (We know all the fundamental
polyads of size 6, but not all of size 7.) We just need a
small subset—polyads up to size 11—to find all tilings for
frames of order up to six. For larger frames, it is an open
question whether a limited set of fundamental polyads is
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FIG. 11. A typical MC tiling of a 23-sphinx.

sufficient to find all the tilings.

FIG. 12. Energy per tile vs. kBT/J of tilings of a 23-sphinx
based on 109 MC samples, and the exact enumeration of the
7-sphinx.

Energetics. Finally, we can include an interaction en-
ergy in our system to study the effects of temperature
on the equilibrium chirality behavior of the tilings. To
define this energy, we consider the chirality of the sphinx,
and assign an energy −J to each edge of length 1 between

two touching sphinxes if the chiralities are the same, and
+J if the chiralities are different. Then, for J > 0, we ex-
pect that at lower temperatures the system will condense
into a phase of a single chirality. Now we carry out the
same polyad-based MC simulation as above, but add the
Metropolis acceptance criterion based upon the changes
of the energy associated with a given trial move [32]. This
system is similar ice-type lattice models where the state
of a neighboring site is restricted by the state of a central
reference site [33, 34]. One difference in the sphinx case
is that not all neighboring sphinxes impinge on a given
sphinx in equal measure—neighboring sphinxes can share
one, two or three common edges. Another difference is
that we have a much richer variety of neighbor configu-
rations than in ice-type models.

The resulting average energy is shown in Fig. 12. To
find this curve, we carried out our MC algorithm at high
temperatures, so that all states were equally likely, and
sampled the distribution n(E) of the number of states at
energy E, which we used to calculate E(T ). For low E
we extrapolated the behavior to our estimated minimum
energy of −1850J , while the lowest energy we found in
the MC was −894J . Exact results for sphinx or order 7,
including the net chirality, are shown in the SM. Further
study of this behavior is left for the future.

In conclusion, the tilings of sphinxes form a rich set
of problems with connections to statistical physics and
mathematics. We developed a Monte Carlo method,
based upon the fundamental polyads, that allows random
tilings to be generated and the thermodynamic behavior
of a system with energetics to be studied. Several models
of physical systems, such as capsids [35, 36], are examples
of practical applications of such investigations.
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Here we have figures illustrating various definitions and results for the sphinx tilings. The expla-
nations and discussions are given in the captions of the figures. Figs. S1–S3 show various definitions
and representations used in this work. Fig. S4 shows the tiling of an order-6 frame with charge (A
vs. V) highlighted. Fig. S5 shows details of the seam method for the seam in Fig. 3 of the main
text. Fig. S6 concerns the asymptotic behavior of the plot in Fig. 4. Fig. S7 shows the 36 sphinx
orientations around a given triangle used in the heat map in Fig. 5. Figs. S8 and S9 show the
frames and tilings of dyad, and Fig. S10 shows all 153 tilings of an order-5 sphinx frame. Figs.
S11–S14 show higher-order polyads of orders 7–10. Figs. S15–S17 show some properties of tilings
on an order-7 frame. Figs. S18 shows the energy and chirality of an order-7 sphinx and relates to
Fig. 13. Figs. S19 shows a tiling of a 12-order frame by triangular sub-units, Fig. S20 concerns a
23-order frame, and the final figure, Fig. S21, shows a tiling of a 100-order frame generated by MC.

Fig. S1. The six faces of the sphinx hexiamond in its canonical state, and anatomical names that we assign to them.
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Fig. S2. Standard colors and numerical designations for the 12 different states of a sphinx tile.

Fig. S3. Special colors used to distinguish certain tile properties. Left: Chirality, L = left (blue), R = right (red); Middle:
Charge, A (+) (amber), V (−) (violet), see also Fig. S4; Right: Base slope, 0° (H) (yellow), +60° (U) (magenta), −60° (D)
(turquoise).
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Fig. S4. Above: Tiling of a sixth-order sphinx, with A-sphinxes (colored in amber) and V-sphinxes (colored in violet). Below:
Illustrations of the A- and V-tile orientations, where + and − represent A- and V-triangles respectively.
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Fig. S5. Seam method for a sphinx of order 6. For this seam, shown in Fig. 3 in the main text, there are 5 tilings for the left
part and 38 tilings for the right part as shown above, yielding a total of 5 · 38 = 190 tilings. For this order sphinx, there are a
total of 145 possible seams and a total of 71,838 tilings.
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Fig. S6. A plot of the slopes in Fig. 4 in the main text vs. 1/n4. The equations of the linear fits in Fig. 4 are: lnN =
0.2288n2 − 0.7508 (n = 3–5), lnN = 0.3759n2 − 2.5114 (n = 6–8), lnN = 0.4154n2 − 3.703 (n = 9–11), and lnN =
0.4221n2 − 2.0353 (n = 12,13). This figure shows a plot of the three latter slopes as a function of 1/n4 = 1/area2, implying

N ∼ exp(0.425n2 − 63.8/n2) ∼ σn2

for large N , where σ = 1.53(1) is the “sphinx constant.” For comparison, in the case of
the Aztec diamond, the number of domino tilings is exactly given by N = (

√
2)A, where A = n(n+ 1) is the area of the Aztec

diamond in domino units, expressed in terms of the order n of the diamond (see Refs. [10,11] in the main text).

123456789101112131415161718192021222324252627282930313233343536 123456789101112131415161718192021222324252627282930313233343536

Fig. S7. Each ‘A’ (4) and ‘V’ (∇) grid triangle and can be covered in 36 ways by a sphinx tile. Depending on its orientation,
a sphinx tile has 2 (or 4) A-faces and 4 (or 2) V-faces. A given A- or V-triangle may be covered by one of the 6 faces of a
sphinx tile in one of 12 states. In the graphics above, the given triangle is marked by a circle, with a central A-triangle on the
left and a central V-triangle on the right. The prevalence of these tiles in tilings of S7 is shown in Fig. 5 in the main text.
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Fig. S8. The 46 different free sphinx dyads, which are size-2 polyiamonds with area 12 (in units of triangular area), which can
be tiled by two sphinx tiles. “Free” means distinct up to rotation and reflection. They have been arranged alphabetically by
the names we have given them.
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Fig. S9. The free tilings of the 46 sphinx dyads of Fig. S8. The dark blue sphinx tile is in the canonical state. Here the dyads
are sorted by the state of the second tile, which is shown in the color spectrum of Fig S2. The bowtie (in the red circle) is the
only dyad with two different fixed tilings; the second tiling is a mirror reflection of the one shown here.
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Fig. S10. The 153 sphinx tilings of an order-5 sphinx frame in the canonical state, using the colors of Fig. S2.

123456789

Fig. S11. Fundamental heptads (polyads of size 7). Heptads found in tilings of order-7 sphinx frames (yellow color above), and
two additional heptads not found in the order-7 tilings (but in tilings of a sphinx of order 8) (purple color below).
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Fig. S12. Fundamental octads (polyads of size 8) found in order-7 sphinx tilings.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546

Fig. S13. Fundamental enneads (polyads of size 9) found in order-7 sphinx tilings. Number 1 is the “mystical triode” (Fig. 9).
Number 43 is the sphinx frame of order 3 shown in Fig. 2, where the bottom right tiling in that figure has no common tiles
with the other three tilings of the S3 frame, making this polyad fundamental.
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Fig. S14. Fundamental decads (polyads of size 10) found in order-7 sphinx tilings.

Fig. S15. Except for the two tilings in Fig. S16, all 5 965 398 sphinx tilings of an order-7 sphinx frame contain at least one of
these 6 fundamental polyads (of orders 2, 3, 4, 4, 6 and 8 respectively). Furthermore, there are only seven tilings of the order-7
sphinx lacking the first 5 polyads above.
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Fig. S16. The only two tilings of an S7 frame that do not contain any of the six fundamental polyads of Fig. S15. Here, the
tilings contain a fundamental hexad (upper figure) and heptad (lower figure) as shown to the right of each tiling.

Fig. S17. Chirality distribution in all 5 965 398 tilings of an order-7 sphinx frame by sphinx tiles. Darker blue means that the
grid triangle is statistically covered by more sphinx tiles with left chirality than with right chirality. Triangles with red color
are covered by more right than left chiral tiles. White triangles represent equal coverage by left and right chiral tiles.
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Fig. S18. The average energy and average chirality as a function of temperature, calculated from the exact enumeration
of all 5 965 398 tilings of an order-7 sphinx (S7). To find these quantities, we used 〈E〉 =

∑
E n(E)Ee−E/T /Q(T ) and

〈χ〉 =
∑

E n(E)χ(E) e−E/T /Q(T ) where χ(E) is the average chirality (L−R) of samples of energy E, Q(T ) =
∑

E n(E)e−E/T ,
and where we took J = 1 and kB = 1 for a dimensionless temperature T . Notice that for S7, the chirality is always positive
and increases as the temperature is decreased, while for S23 we find a negative chirality in our MC simulations.

Fig. S19. Twelve is the smallest order of a sphinx frame where a tiling exists in which each of the six order-12 triangles (T12)
is tiled by sphinx tiles. Equilateral triangles smaller than order 12 cannot be tiled by sphinxes. This method of substitution,
using all 830 tilings of T12, generates 8306 distinct sphinx tilings. Although this represents over 3.2 × 1017 tilings, it still
accounts for only about one hundred millionth of all order-12 sphinx tilings.
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Fig. S20. Tiling realizations of an order-23 sphinx frame for low and high chiral energy, found with the Monte Carlo method.
Top left: low energy, top right: high energy. Bottom row: the same tilings as the top row, but with L tiles shown in blue and
R tiles shown in red.
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Fig. S21. A typical tiling of an order-100 sphinx frame generated by the fundamental polyad MC algorithm.


