H® mer SimpsOn
and his D& ughnuts

I have always been inspired by the writings of Marcus
Aurelius, the famous Roman emperor who said of
each particular thing, ask what is it in itself? What
is its nature? It has prompted me to explore my own
understanding of our magnificent subject. In class,
we are all keen to challenge our pupils in order to
encourage them to think and talk about their ideas; not
always easy with 21st century kids who expect us to
entertain them on demand. Interestingly, I have always
found TV a marvellous tool for teaching enrichment
activities. It can turn a dull topic for some into an
exciting and challenging experience.

So who better than Homer Jay Simpson, a fictional
character in the animated television series, The
Simpsons, to help introduce some facts regarding
the doughnut or ‘torus’, one of the most fundamental
mathematical objects in the universe. Homer has
legendary status and a cult following with pupils. In
fact, viewers of Channel 4 voted Homer first place
in 2001’s 100 Greatest TV Characters and in 2003,
he was made an honorary citizen of the Canadian
city of Winnipeg! However, I must confess to
sharing several attributes with Homer; in particular,
his dreaming ability prior to attempting this piece
of mathematics.

I am very fortunate that I have access to a Smart
board, Internet and Autograph software. The lesson is
introduced to the class with a video clip, that depicts
Homer eating doughnuts in hell. This is followed by a
discussion of the definition of a torus and a note in their
jotters. Torus (plural tori) is the Latin word for cushion.
Mathematically, it is a surface of revolution generated
by revolving a circle in three dimensional space about
an axis coplanar with the circle, which does not touch
the circle. Examples of tori include inner tubes and
the surfaces of doughnuts (or ‘donuts’ in the States),
Homer’s favourite snack.

In groups, the following questions are posed:
Is a doughnut a polyhedron?
What is the volume of a doughnut?

What is the surface area of a doughnut?

The answerto the first question s ‘no’ since a polyhedron
is a geometric object with flat faces and straight edges.
Answers to the second and third questions require a bit
more reasoning!
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Approach with S2-S4 pupils

With a good sketch and an active imagination, the
idea here is to slice the doughnut through a circular
cross-section and straighten it out so that it becomes
a cylinder with a half-cylinder truncated from either
end. It is then plausible to form a single cylinder from
its object by mentally slicing off the half-cylinder from
one end, turning it over, and replacing it at the other
end so as to match the missing half-cylinder there.

The volume of our torus is much
the same as the volume of a
cylinder with the same radius r A
(and hence, base area mr?) and
height equal to the circumference
of a circle of radius R.

Therefore the volume, V, of our
torus is V = r?2nR = 27*Rr2.

In a similar way, the surface area
of the torus equals the curved
surface area of our cylinder.
Slicing the cylinder open parallel
to its axis and flattening it out,
we form a rectangle whose
height is- the same as that of our
cylinder and whose width is the
circumference of its base. The
area of this rectangle, and hence
the surface area S of our torus is

S = (2nR)(2mr) = 4R
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Selected approach with Higher pupils

Acknowledgement: Both in this section and the next,
I have leant heavily of the ideas and images of Paul
Bourke of the University of Western Australia. My
thanks to him for permission to employ them here.
See Paul’s solids of revolution at http://chuwm?2.tripod.
com/revolution.

I introduce the torus after delivering ‘The Circle’,
when pupils are familiar with the equation of a circle
(x — a)* + (y — b)* = r* with centre (a,b), radius r.

A torusbis a hollow solid and its volume can thus be
regarded as the difference of the volumes of the solids
in the next two figures:

The larger solid (which corresponds to the outer surface
of the torus) is obtained by revolving the upper half of
the circle (x — 3)? + (y — 3)? = 1 around the x-axis.

Now, from the equation of the circle,
y-3P=1-(x-3)%
we can rearrange to give

y=3i,/1—(x—3)2.

Of course, the upper part of the circle should
correspond to

y=3+4/1-(x-3).

Therefore, the volume of the larger solid is given by

. I(}Jl(x_z))d ()

On the other hand, the smaller solid (which
corresponds to the inner surface of the torus) is
obtained by revolving the lower half of the circle

(x- 3)2 +(y-3 )2 =1 around the x-axis (above).
The lower part of the circle should correspond to

y=3-\1-(x-3).

Therefore, the volume of the smaller solid is equal to
4 2
veal (-fi-G3) e 2)
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Combining (1) and (2), the volume of the torus is thus
givenby V —v or

o TG s G- Y

which can be further expressed as 27°Rr> .

Approach with Advanced Higher pupils

The torus can be introduced after teaching parametric
equations, for example:

X =rcosi
y =rsint

which is one set of parametric equations for the
circle.

A doughnut can be defined parametrically by
x(u,v): (R+ rcosv)cosu
y(u,v): (R+ rcosv)sinu
z(u,v):rsinv

where u, v are in the interval [0, 27), R is the distance

from the centre of the tube to the centre of the torus,
and r is the radius of the tube.

An equation in Cartesian coordinates for a torus
radially symmetric about the z-axis is

(R —JxX*+y j+ 2= P,
and clearing the square root produces a quartic:
(x2+y2+zz+R2—r2)z= 4R2(x2+y2)

The surface area and volume of this doughnut are
given by,

A=4Rr = (20 )(27R)
V =21"Rr? = (- )(27R).

Using Autograph software (at least version 3.1), a
torus can be examined using the following formula, in
spherical polar equation mode:

X = (c+ acosq))cosﬁ

V= (c+ acosq))sine

z=asin¢.
Using plane x+y+z=k will enhance the
experience!
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Challenge Question (Courtesy of Paul Bourke)

How many ways can a torus be cut (with a single
plane) so that the resulting cross-sections are perfect
circles?

I use 7, = major radius =2, », = minor radius = 0.75:

Answer: There are 3 ways!

Method 1

Horizontal slice resulting in two concentric circles
The radii of the two circles are given by

fi+\/7}z_—?and”"—m

where £ is the distance of the cutting plane above the
plane of the torus. Note that when the cutting plane is
at a distance equal to the minor radius r, , then there
is only one solution. At greater distances, there are no
solutions, as the plane doesn’t cut the torus.

Method 2
Vertical slice resulting in two non-intersecting circles

Radius of circles = r,.
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Method 3

Angular cut resulting in two overlapping circles

Radius of circle = .

These are two of the so called ‘Villarceau’ circles,
named after French astromer and mathematician, Yvon
Villarceau (1813-1883). There are four Villarceau
circles passing through an arbitrary point on the surface
of a torus.

For example, let the torus be given implicitly as the set
of points on circles of radius three around points on a
circle of radius five in the xy-plane

0=(x*+y"+2 +16)2 -100(x* + y*)

Slicing with the z = 0 plane produces two concentric
circles:
X'yt =27,

'+t =82

Slicing with the x = 0 plane produces two side-by-side
circles:

Sample Villarceau circles can be produced by slicing
with the plane 3x = 4z . One is centred at (0, +3, 0), the
other at (0, =3, 0). Both have r = 5.

They can be written in parametric form as
(x.».2)=(4cos 9, +3 + 55in¥,3cos V),
(x.7.2)=(4cos9,-3 + 55in 0,3 cos ).

The slicing plane is chosen to be tangential to the torus
while passing through its centre. Here it is tangential at
("%, 0, '%) and at (—'%, 0, —'% ). The angle of slicing is
uniquely determined by the dimensions of the chosen
torus, and rotating any one such plane around the
vertical gives all of them for that torus.
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