
iDome: Immersive gaming with the Unity3D game engine
Paul Bourke

WASP, University of Western Australia
35 Stirling Hwy, Crawley

West Australia
Phone: 61 8 92218594

paul.bourke@gmail.com

Abstract
In many games, notably first person shooters, the player inhabits a 3D virtual world similar to the user

experience in a virtual reality application or training simulator. It is generally accepted that in such

environments there is a heightened sense of immersion and engagement [1] if the player is

surrounded by the virtual imagery, that is, the virtual world occupies their entire visual field. However

traditional realtime graphics APIs only support parallel and perspective projections, whereas for

immersive displays different projections are required. In the following I will discuss a particular

immersive display environment based upon a hemispherical dome and present a method of creating

the correct projections using the Unity game engine [2]. Design decisions will be presented along with

a discussion of the performance and issues with the approach taken. The techniques discussed are

general and appropriate to other game engines for which source code is available or, as in the case of

Unity, the scripting language is powerful enough to implement the required mapping and geometry

correction.

Keywords

Immersion, hemispherical dome, Unity game engine, peripheral vision, iDome.

1. Introduction
Over the last 20 years there have been many different immersive environments in which a user has

had his/her field of view (FOV) completely occupied by the virtual world. Some of these, such as the

StarCAVE [3] involve multiple planar walls surrounding the user, these were initially inspired by the

CAVE [4]. Others have been based upon partial or full cylinders, examples include the full cylinder

employed in the AVIE [5] and the partial cylinder of the SGI Reality Centre. A more budget version

sees the cylindrical surface replaced by a number of planar walls. A third category are based upon

portions of a sphere, an early example of a personal spherical display was the VisionStation by

Elumens which had about a 150 degree horizontal field of view. Planetariums are an example of

hemispherical environments but they are orientated in such a way that does not make them ideal for

engaging in land based worlds. In the discussion here I will introduce a hemispherical dome, called

the iDome [6], that is orientated to be in front of the user. The software techniques required to present

a virtual world in this device are common across many immersive architectures.

The impediment to using an arbitrary game in these environments is that they don’t support the

projections required. Typically 3D games provide a standard perspective projection with perhaps at

most a 120 degree field of view and even at that limited FOV there is considerable distortion and pixel

inefficiency. One solution then is to render multiple perspective views that cover a superset of the

required field of view and combine these together to form the require FOV, noting that some

additional image warping may be required to deal with the geometry or other details of the projection

geometry [7].

2. iDome
The iDome is a 3m diameter hemisphere, a full half sphere with the lower one quarter removed (180

degree field of view horizontally and 135 degree field of view vertically). The dimensions were chosen

to both fit within a standard stud room (2.7m) and to ensure that a seated player has their eye level at

the center of the hemisphere, see figure 1.

Figure 1. Photographs of the iDome, a 3m diameter hemispherical surface. In the image on the right note the

absence of any intrusive projection hardware.

The physical projection is achieved with a single HD (1920x1080) projector and a first surface

spherical mirror that essentially provides the light scattering required to fill the internal dome surface

with a digital image. The key reason for using this approach is the unobtrusive nature of the projection

hardware compared to the less complicated fisheye lens projection (of the Visionstation say) where

the ideal position for the projector is competing for space with the location of the user. This projection

system requires that one does not project, as perhaps expected, a fisheye image but a predistorted

fisheye image, predistorted in just the right way to ensure that when the image is reflected off the

mirror it appears correct and natural on the dome surface. Figure 2 illustrates the optical geometry of

the system, it is this geometry that determines how the fisheye image is prewarped [7] in order to yield

the correct results. The image on the right in figure 2 illustrates how an accurate calibration ensures

an undistorted view on the dome. It should be noted that the image only appears undistorted for a

viewer in the correct location, this “sweet spot’ can be located anywhere by using a different image

warping but in this case it is the center of the dome. Another advantage of the use of a single

projector is that it greatly simplifies the software model compared to the multiple projector solutions to

hemispherical projection [8].

3. Algorithm
Unity is typical of the majority of games or game engines, that is, it normally runs with a single display

and it generates a single perspective projection with some limited field of view, typically around 60

degrees horizontally and in extreme cases perhaps 100 degrees. The iDome requires a 180 degree

field of view and this cannot be achieved with a standard perspective camera as provided directly by

real time APIs such as OpenGL or Direct3D.

Figure 2. Cross section of the iDome showing the projection optics on the left. The right illustrates the correct

appearance of a polar grid calibration image. Note that the camera taking this image is not at the intended viewer

position, the user at the center of the dome sees lines of longitude that are radially straight and the lines of

latitude circular and equally spaced.

There are two ways this wider field of view can be captured. One option is to create a vertex shader

that predistorts the geometry of the world in such a way that when that distorted geometry is viewed

with an orthographic camera the result is a fisheye projection [9]. While the basic algorithm for such a

vertex shader is relatively straightforward and has the performance advantage of only requiring a

single rendering pass, the technique suffers from a significant drawback. Specifically, while the line

between two points in a planar perspective projection is “straight”, the line between two points in a

fisheye projection is not a straight line, see examples in figure 3. The consequence of this is that lines

or polygons of significant length, with respect to their projection on the fisheye image, need to be

tessellated. While this is not too severe for lines where the tessellation increases the geometry load

linearly, for polygons the geometric load increases by the square of the number of tessellation stages

required. The optimal algorithm for this tessellation is by no means obvious since it is a function of

both how close objects are to the camera and their orientation to the fisheye projection. For example

a polygon may need to be tessellated differently depending on both its distance and angle to the

camera. The resulting increase in geometric load not only impacts upon the number of vertices being

drawn and hence the frame rate, but it is also a variable performance load depending on the

relationship of the camera to the 3D geometry.

Figure 3. Straight lines in a perspective projection do not appear straight in a fisheye projection.

Figure 4. Flow diagram of the 5 pass rendering algorithm. 4 passes create the fisheye projection and an

additional pass creates the geometry corrected fisheye required by the use of the spherical mirror instead of a

fisheye lens.

The alternative approach and the one employed here is to render multiple views (acquiring imagery

across the wide field of view required) and to stitch those together to form a fisheye projection.

Imagine a cube centered at the camera position and aligned such that “forward” is towards the

midpoint of one of the edges. The faces of the cube define standard perspective projections each

having a vertical and horizontal field of view of 90 degrees. Using this technique the minimum number

of views required to form a full hemispherical display is 4, that is, the left, right, top, and bottom faces

of the cube form the projection plane of the 4 view frustums. These 4 renders are applied as textures

to one of 4 meshes whose texture coordinates have been designed to result is a fisheye projection.

Figure 5. Flow diagram showing images from a single location within the Unity demonstration scene.

If a fisheye lens and projector are used then there is nothing more to do. However in the projection

hardware employed in the iDome (for budgetary reasons) there is an additional geometry correction

that needs to be applied to this fisheye image to compensate for the distortion introduced by the

spherical mirror. This is nothing more than the application of the fisheye image as a texture to a mesh,

the mesh node positions and/or the texture coordinates are arranged in such a way as to create the

required warped image. While outside the scope of this discussion, the exact details of this mesh are

derived by considering the geometry of the projection. This calibration considers the relative positions

of the dome, mirror, projector and the optical specifications of the projector to give a precise warping

for a particular installation, see figure 2.

In summary, there are 4 render passes to create the fisheye image followed by an additional image

warping phase, this is illustrated in figure 4. Note that while one is required to render the whole top

and bottom cube frustum only half of each is actually used to form the fisheye image. In terms of what

is required of a gaming engine, it is essentially the ability to support render to texture and this is

indeed provided in the Pro version of the Unity engine.

4. Implementation
The implementation in Unity involves a 4 camera rig, each camera directed towards the center of one

face of the cube and each having a 90 degree field of view vertically and horizontally, see figure 5.

Each camera is set to render to a texture and each of these textures is applied to one of 4 meshes to

form a fisheye image. A 5th orthographic camera captures this fisheye image and the result is applied

to the mesh that performs the geometry correction required for the spherical mirror. And finally a 6th

camera, also orthographic, views this mesh and presents the result to the user. The 4 mesh pieces

that create the fisheye and the mesh that performs the warping are placed on their own layers so as

to be invisible to game play. The same applies to the directional lights that illuminate these meshes.

5. Discussion
The resolution of each cameras render-to-texture (cube faces and fisheye) in the multiple pass

algorithm deserves some consideration. Larger textures than necessary should be avoided for

performance reasons and because in general to reduce scale aliasing reasons one does not want to

be scaling textures down significantly. On the other hand one wants texture dimensions to optimally

exploit the capabilities of the projector since this ultimately determines the final resolution of the scene

on the dome. There is also the constraint that render-to-texture textures need to be powers of 2 in

each dimension. As it happens these constraints result in only one choice that is appropriate for the

HD (1920x1080) projector used in the iDome. If the textures for the cubic rendering are 1024x1024

then the appropriate dimensions for the fisheye camera is 2048x2048 (almost a 1:1 mapping of

pixels) for a final warping to 1920x1080 (a reasonable image reduction).

There is obviously a performance penalty in the multiple pass algorithm but it is not a factor of 4 (or

more) as one might expect. Table 1 gives the average results from 10 positions scattered around the

Unity Island demonstration game, these timing were performed on a Mac Pro with an ATI Radeon

X1900 graphics card. The variation in the rendering of the cube maps arises because in general the

top and bottom cube faces render faster. Note that the Unity application for these tests was built with

sync to vertical retrace enabled (limited to 60Hz), this biases the high frame rate calculations and

generally underestimates them.

An obvious question might be, why not remove the fisheye stage altogether and create the warped

fisheye image directly from the 4 cubic maps. This has been implemented but for the sake of

generality the fisheye production is retained in order to support direct fisheye lens projections

systems. As seen in table 1 the performance penalty for the warping in the final stage was less than 1

frame per second.

Rendering single cube face Combined to form fisheye Warped fisheye

36-52 fps 24 fps 23.2 fps
Table 1. Frame rate as various parts of the pipeline are enabled. Note that the dynamic scene simplification of

the demo scene has been disabled for these timings, so this is the scene rendered at the highest quality and

therefore most the demanding of CPU/GPU resources.

There are some components and effects used by the Unity rendering engine that are applied as a

postprocess to the frame or are sensitive to the camera view direction, these can cause errors

between the seams of cubic map images. Two obvious examples relate to the sun glow and

associated solar flares, another is the ground foliage that is implemented as textured planes

maintained parallel to the camera. This later artifact is most commonly noticed between the bottom

face and the left/right face where the camera view direction is parallel to the billboard planes. Trees in

Unity do not suffer from this issue since they are full 3D objects.

Conclusion
It has been shown that given sufficient control over the rendering pipeline a game engine can be

“taught” to provide projections suitable for immersive displays, in this case a hemispherical dome.

These same general techniques can be used for multiple wall displays, cylindrical displays, and

stereoscopic projection. The multiple pass rendering algorithm for the iDome has a performance

penalty factor of between 2 and 3 on the demonstration scene used but this factor has been observed

across a variety of different scenes. There are some rendering effects that are dependent on the

camera direction, in practice they were not objectionable and can be minimized or removed altogether

by careful game design.

Figure 6. Two artifacts arising from effects created in a postprocessing phase or those with a camera direction

dependence. Left: sun effects at the seam of the left and right cube face. Right: grass planes on the bottom face

parallel to camera view direction.

References
[1]	
 	
 R.	
 Ball,	
 C	
 North.	
 The	
 effects	
 of	
 peripheral	
 vision	
 and	
 physical	
 navigation	
 on	
 large	
 scale	
 visualization.	
 ACM	
 International	

Conference	
 Proceedings	
 Series;	
 Vol	
 322.	
 Proceedings	
 of	
 graphics	
 interface	
 2008.	
 ISSN:0713-­‐5424.	
 	

[2]	
 	
 Unity	
 Game	
 Engine.	
 http://www.unity3d.com.	
 [Online	
 reference].	

[3]	
 	
 Thomas	
 A.	
 DeFantia,	
 Gregory	
 Dawea	
 ,	
 Daniel	
 J.	
 Sandinb,,	
 Jurgen	
 P.	
 Schulzea	
 ,	
 Peter	
 Ottoa,,	
 Javier	
 Giradoc,	
 ,	
 Falko	
 Kuestera,,	
 Larry	

Smarra,	
 	
 and	
 Ramesh	
 Rao.	
 The	
 StarCAVE,	
 a	
 third-­‐generation	
 CAVE	
 and	
 virtual	
 reality	
 OptIPortal.	
 Future	
 Generation	
 Computer	

Systems,	
 Volume	
 25,	
 Issue	
 2,	
 February	
 2009,	
 Pages	
 169-­‐178.	

[4]	
 C.	
 Cruz-­‐Neira,	
 D.J.	
 Sandin,	
 T.A.	
 DeFanti.	
 Surround-­‐Screen	
 Projection-­‐Based	
 Virtual	
 Reality:	
 The	
 Design	
 and	
 Implementation	
 of	
 the	

CAVE.	
 ACM	
 SIGGRAPH	
 93	
 Proceedings.	
 Anaheim,	
 CA,	
 pp.	
 135-­‐142,	
 August	
 1993.	

[5]	
 	
 AVIE:	
 Advanced	
 Visualisation	
 and	
 Interaction	
 Environment.	
 http://www.icinema.unsw.edu.au/projects/infra_avie.html.	
 [Online	

reference].	

[6]	
 	
 P.D.Bourke,	
 Low	
 Cost	
 projection	
 Environment	
 for	
 Immersive	
 Gaming.	
 JMM	
 (Journal	
 of	
 Multimedia),	
 ISSN:	
 1796-­‐2048,	
 Volume	
 3,	

Issue	
 1,	
 2008,	
 pp	
 41-­‐46.	

[7]	
 	
 P.D.Bourke,	
 Using	
 a	
 spherical	
 mirror	
 for	
 projection	
 into	
 immersive	
 environments.	
 Proceedings	
 of	
 the	
 3rd	
 international	

conference	
 on	
 Computer	
 graphics	
 and	
 interactive	
 techniques	
 in	
 Australasia	
 and	
 South	
 East	
 Asia.	
 pp	
 281-­‐284.	

[8]	
 D.	
 Jo,	
 H.	
 Kang,	
 G.A.	
 Lee,	
 W.	
 Son.	
 Xphere:	
 A	
 PC	
 Cluster	
 based	
 Hemispherical	
 Display	
 System.,	
 IEEE	
 VR2006	
 Workshop	
 on	
 Emerging	

Technologies.	
 March	
 26,	
 2006.	

[9]	
 	
 M.	
 Bailey,	
 M.	
 Clothier,	
 and	
 N.	
 Gebbie,	
 Realtime	
 Dome	
 Imaging	
 and	
 Interaction:	
 Towards	
 Immersive	
 Design	
 Environments.	

Proceedings	
 of	
 ASME	
 2006	
 International	
 Design	
 Engineering	
 Technical	
 Conference,	
 DETC2006-­‐99155,	
 September	
 2006.	

	

	

